

a reference manual for

o S / A +

an Operating System for Atari Computers +
an Operating System for Advanced users

The programs, disks, and manuals comprising
OS/A+ are Copyright (c) lQ82,1983 by
Optimized Systems Software, Inc.

This manual is Copyright (c) 1982,1983 by
Optimized Systems Software, Inc.
1173-D Saratoga-Sunnyvale Rd.
San Jose, CA 95129

This manual revised June, 1983

All rights reserved. Reproduction or translation of
any part of this work beyond that permitted by sections
107 and 108 of the United States Copyright Act without
the permission of the copyright owner is unlawful.

PREFACE

OS/A+ is the result of the efforts of several persons,
and we believe that proper credit should be given. The
original Apple version of the console processor (CP)
and the original version ("version 2") of the File
Manager System (which is, of course, identical with
Atari's DOS 2.0S) were written by Paul Laughton, ex of
Shepardson Microsystems, Inc., who also authored the
original Apple DOS (version 3.1). The current versions
of all other portions are primarily the work of Mark
Rose, of OSS, with the collaboration of Bill Wilkinson
and Mike Peters.

We realize that OS/A+ is not the most sophisticated,
most complete, operating system for any and all
microcomputers, but we believe that the inherent power
and flexibility that it exhibits within its compact
size are a good match for the size and features of the
machines it is intended for.

TRADEMARKS

The following trademarked names are used in various
places within this manual, and credit is hereby given:

OS/A+, BASIC A+, MAC/65, and C/65 are trademarks of
Optimized Systems Software, Inc.

Atari, Atari 400, Atari 800, Atari Home Computers, and
Atari 850 Interface Module are trademarks of
Atari, Inc., Sunnyvale, CA.

TABLE OF CONTENTS

OS/A+ Command Summary

Chapter 1

Chapter 2
2.1
2.2
2.3
2.4
2.5
2.6
2.7

Chapter 3
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10

Chapter 4
4.0
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14

Introduction

Getting Started with OS/A+
Overview of OS/A+
The OS/A+ Console Processor
System Requirements
Why Two Versions of OS/A+ ?
Booting Up
Legal File & Device Names
CP Commands

How To
Glossary
Booting the Master Diskette
Creating a STARTUP.EXC File
Duplicating a Diskette
Configuring the Drive
Formatting a Diskette - Ver 2
Formatting a Diskette - Ver 4
Copying Files
Use of COPY24
Use of SDCOPY

Intrinsic Commands
@
CARtridge
DIRectory
END
ERAse
LOAd
NOScreen
PROtect
REMark
REName
RUN
SAVe
SCReen
TYPe
UNProtect

1

2
2
4
5
5
6
6
8

9
9
11
13
15
22
24
26
29
33
39

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

Chapter 5
5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16

Chapter 6
6.1
6.2
6.3
6.4
6.4.1
6.4.2
6.5

Chapter 7
7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11

TABLE of CONTENTS (cont)

Extrinsic Commands
ADOS
BASIC
C65
CLRDSK
CONFIG
COPY
COPY24
DO
DUPDBL
DUPDSK
HELP
INIT
INITDBL
MAC65
RS232
SDCOPY

Batch processing
overview of Batch Processing
.EXC File Format
Intrinsic Commands for .EXC
Stopping Batch Files
Stops by OS/A+
Stops by User Programs

STARTUP.EXC: A Special File

BASIC and OS/A+
The Basic CLOSE stmt
The Basic ENTER stmt
The Basic GET stmt
The Basic INPUT stmt
The Basic LIST stmt
The Basic LOAD stmt
The Basic OPEN stmt
The Basic PRINT stmt
The Basic PUT stmt
The Basic SAVE stmt
The Basic XIO stmt

58
60
61
62
63
64
66
68
70
71
72
73
75
76
77
79
80

81
81
82
82
83
83
83
84

85
86
87
88
89
91
92
93
96
97
98
99

Chapter

Chapter

8
8.1
8.1.1
8.1.2
8.1.3
8.2
8.2.1
8.2.2
8.2.3
8.2.4
8.2.5
8.2.6
8.3
8.3.1
8.3.2
8.3.3
8.3.4

9
9.1
9.1.1
9.1. 2
9.1.3
9.2
9.2.1
9.2.2
9.2.3
9.2.4
9.2.5
9.2.6

TABLE of CONTENTS (cont)

Assembly Language and OS/A+
Interfacing to I/O Routines
Structure of the IOCBs
The I/O Commands
Error Codes Returned

Manipulation of OS/A+
SYSEQU.ASM
OS/A+ Memory Location
Execute Parameters
Default Drive Location
Extrinsic Parameters
RUNLOC

Device Handlers
Device Handler Table
Rules for Writing Handlers
Rules for Adding to OS/A+
An Example Program

Disk File Structure
Version 2 File Structure
Data Sectors
Disk Directory
Volume Table of Contents

Version 4 File Structure
The VTOC
The Directory
The File Map
Buffer Allocation
Adding Drives Under Ver. 4
READ/WRITE Sector Routines

104
105
105
110
114
115
115
115
116
116
117
118
118
118
119
121
123

125
125
126
127
129
130
133
134
136
137
138
139

Chapter 10 -- Version Differences 140
10.1 Features Unique to version 4 141
10.2 Differences: Atari DOS & OS/A+ 142

Appendix

Appendix

A --
A.l
A.2
A.3

B --
B.l
B.2
B.3

Customizing OS/A+
Buffer Allocation
Specifying Existing Drives
Saving Your Modified Version

System Memory Maps
Atari Zero Page Map
System Memory Map (Ver. 2)
System Memory Map (Ver. 4)

145
145
146
146

147
147
147
148

Appendix C -- Errors
C.l Types of Errors
C.2 Error Code Meanings

149
149
150

INTRINSIC COMMAND SUMMARY

Transfer control to a cartridge

DIR [Dn:][file-name] [output file-spec]
View the disk directory

END Stop batch execution from within
an execute file

ERA [Dn:]file-name Remove files from a disk

LOAD [Dn:]file-name Load disk files into,memory

NOScreen Turn off command echo to screen
during batch

PRO [Dn:]file-name Protect files from accidental
erasure, writing, or renaming

REM any characters Print remarks to the screen during
batch execution

REN from-file-name to-file-name
Rename a file to a new name

RUN [hex-address] Transfer control to an address
in memory

SAVE file-spec start-address end-address
Save a portion of memory to a
disk file

SCR Cause batch commands to be echoed
to the screen

TYP [Dn:]file-name [output-file]
Type a text file to the screen
or another file

UNP [Dn:]file-name

@

Dn:

Remove the protection caused by
the PRO command

Begin execution of a batch file

Change the default drive number

ADOS

BASIC

C65

CLRDSK

EXTRINSIC COMMAND SUMMARY

Allow access to version 2 and
version 4 files at the same time

Load and execute BASIC A+

Load and execute the C/65 compiler

Initialize a diskette like the
Atari 810 disk drive does.

CONFIG [parmI parm2 ... J [-N]
Change the status of a configu-
rable drive

COpy source-file destination-file [-FQSW]
or

COpy file [-FQSW] Copy files.

COPY24 source-file destination-file [-FQWD]
Transfer files from version 2 to
version 4 diskettes (& vice versa)

DO command[;command;command ...]
or

DO

DUPDBL

DUPDSK

HELP

INIT

INITDBL

MAC65

RS232

Perform a sequence of commands

Duplicate a double density diskette

Duplicate a diskette

Provide a MENU of system commands

Format a diskette

Format a double density diskette
on a single drive

Load and execute the MAC/65 macro
assembler

Install the serial device handlers
("Rn:") for use with the Atari 850
Interface Module.

SDCOPY source-file destination-file [-FQRV]
Copy single density files to double
density diskettes

CHAPTER 1: HOW TO USE THIS MANUAL

Anxious to try OS/A+? Can't wait to wade through all
this? No matter what your prev10us background, we
suggest you read chapter 2, which gives an overview of
OS/A+ and its commands. At that point, if you are
still relatively inexperienced, you will want to read
chapter 3, which gives step-by-step instructions for
common OS/A+ operations.

If you are a more experienced user, you should read
chapters 4, 5, and 6, which cover all the OS/A+
commands in detail and present an explanation of batch
processing under OS/A+. Users interested in writing
programs for use under OS/A+ will also be interested in
chapters 7, 8, and 10, which cover using OS/A+ from
BASIC and assembly language.

For users interested in more deeply understanding the
internal workings of OS/A+, chapter 9 provides
information on the way OS/A+ manipulates disk files.

Even if you are not skipping ahead,
skim through unfamiliar material at
plan to come back later when you're
understand the system.

you may want to
first reading; but
ready to really

Anyway, put your OS/A+ master disk (WITH write protect
tab on, PLEASE!) into Drive One , turn on your system,
and try us!

P.S. Maybe the first command you want to learn is
"DUPDSK" (section 5.10), to back up your valuable
system master. Surprised? OS/A+ is NOT copy
protected. We hope you are considerate of our rights
so that we may continue to be considerate of your
convenience.

--1--

CHAPTER 2: GETTING STARTED WITH OS/A+

2.1 OVERVIEW OF OS/A+

The purpose of OS/A+ is to provide a way for your Atari
computer to communicate with your disk drives, printer,
or other computer products. OS/A+ contains commands
and utilities which allow you to:

1. Organize information into files on your
diskettes.

2. Access this information with ease and
precision.

3. Make use of other applications programs (e.g.
BASIC A+, MAC/65, BUG/65, Atari BASIC, etc.).

4. Pass control of the computer between the
Operating System (OS/A+), Cartridges, and
programs stored on disk.

OS/A+ was originally an accident, brought about by the
fact that that we developed Atari's DOS and Atari's
BASIC on an Apple II computer. To simulate Atari's
indeed excellent OS ROMs, we wrote our own simple CIO
(Central Input/Output) system. From there, it was only
logical that we install a Console Processor similar to
that of Digital Research's CP/M (their trademark).
Then when we introduced BASIC A+, we moved the "Cp"
over to the Atari, and prestol There was born OS/A+
version 1.0 for the Atari.

This manual actually describes two products:
OS/A+ version 2 for Atari Computers
OS/A+ version 4 for Atari Computers

OS/A+ (and, naturally, Atari's OS) utilizes a software
concept which is built around a structured and layered
scheme. In particular, application programs are
expected to make calls to the OS via the Central Input
Ouptput routine ("CIO"). In turn, CIO is a dispatcher
Which examines the application program's request and
routes the necessary subrequests to the appropriate
device driver{s).

On the Atari, the device drivers may in turn call the
SIO (Serial Input/Output) routines to perform the
actual channel communications with devices on the
serial bus (obvious exceptions include the screen and
keyboard, which do not require serial bus service).
Finally, the device (on the serial bus) receives the
SIO request and performs the actual I/O needed. The
diagram on the next page illustrates this process.

--2--

above

Application
Program

1,

BASIC User
Program

I
I

BASIC A+
I
I

Any ONE of the
I

CIO

Console
Processor
(OS/A+)

I
1

1
Disk
Device
Driver

1

SIO

I
lisk drive)

I
Printer
Device
Driver

I

I
(printer)

I
Keyboard
Device
Driver

I
(Atari keyboard)

Screen
Device
Driver,

'TV/monitor)

Figure 2-1
Overview of OS/A+

Generally speaking, there is no reason anyone or more
portions of this hierarchical structure cannot be
replaced with another, equivalent section of code. On
the Atari computer, in fact, the FMS (or File
Management System) itself is "added" to the default
structure only if a disk drive is present at power-on
time. Several manufacturers, for example, have
produced their own printer or screen drivers, replacing
the Atari-supplied drivers with minimal effect.

--3--

Unfortunately, we cannot say that any given portion may
be replaced with NO effect, simply because an
unfortunately high portion of software written for the
Atari violates the hierarchy (by direct calls to device
routines, or worse). These violators are by no means
in the majority, or we might have no hope of ever
producing an improved Atari system. However, we should
be aware of at least the most important of these (quite
frankly) poorly written programs and maintain what
compatibility that we can when we change the system.

Generally, the worst offenders are programs such as
VISICALC and MICROSOFT BASIC, both of which make
assumptions about memory layout and disk usage.
However, these programs (and most others) are shipped
with an operating system intact on the disk on which
they reside. Thus, although we may not force them to
take advantage of the expanded capabilities that our
device drivers may offer, at least we need only
maintain compatibility with a standard Atari 800 and
810 Disk Drive to allow their usage on otherwise
improved products.

2.2 THE OS/A+ CONSOLE PROCESSOR (CP)

As you might recall from Figure 2-1, the CP (Console
Processor) is NOT a priveleged part of the system. CP
functions as an easy-to-use interface between the human
at the keyboard and the machine level of the CIO calls.

In section 2.1 we mentioned that any portion of the
OS/A+ system could be replaced without change to any of
the other sections. This is perhaps most true of the
CPo For example, in a dedicated run-time environment
it has no reason to exist. Others have written an
equivalent CP and placed it under the Atari DOS system,
but we believe that the CP of OS/A+ is a very
well-designed, well-executed human interface,
especially considering that it occupies less than 800
bytes of your precious memory.

--4--

2.3 SYSTEM REQUIREMENTS

Although both versions of OS/A+ for the Atari will run
nicely in 32K bytes of RAM, it isn't realistic to use
less than 40K or 48K and expect to do useful work with
most languages and/or applications. Obviously, with
hath versions at least one disk drive is required. Two
disk drives are highly recommended. The Atari version
4 system requires (and only runs on) double density or
larger disk drives.

2.4 WHY TWO VERSIONS OF OS/A+ ?

Because we like to add to the confusion, of course.
Seriously, when we originally produced Atari DOS, we
wrote it to Atari specifications. There is more detail
on this subject in Chapter 9, but suffice to say the
real problem with Atari's FMS (and hence with OS/A+
version 2) is that it was never designed to handle
disks larger than 256 Kilobytes. But now Percom Data
Company, Software Publishers, and others have added
double sided, double-density disks to their catalog,
with capacities of nearly 400 Kilobytes.

Given that we need to access more than 256K bytes per
disk and/or file, how can we expand on the Atari
system? An obvious solution is to introduce the
concept of "logical disks", wherein a larger drive
might contain two or more disjoint segments, each
wholly allocated to imitate an 810 disk system. Anyone
who has tried the Corvus equivalent of this scheme will
recognize the inadequacies of this solution.

So, given that we will no longer be compatible with
Atari products, why not seize this opportunity to "do
it right"? Why not produce a wholly different file
manager system that is not bound by the restrictions of
Atari DOS? This is the path we have chosen.

Thus we come to OS/A+ version 4, a mapped file system.
Since we wrote not only Atari DOS but also Apple DOS,
we naturally thought of an extension on the Apple
scheme as the logical step up from Atari DOS and
version 2 of OS/A+. We do not know if it might ever
happen, but using our version 4 scheme would,
presumably, enable a manufacturer to offer disk systems
which were MEDIA and FILE COMPATIBLE on both Apple and
Atari (and perhaps other 6502 systems).

--5--

2.5 BOOTING UP (and returning to CP)

When an OS/A+ disk is booted, the CP is immediatly
entered. of OS/A+ from the cartridge 1S
normally done through the use of the DOS command (i.e.,
the BASIC command for this is DOS). Some cartridges do
not allow DOS-type exits and thus OS/A+ cannot be used
with these cartridges.

In any case, when the CP is entered it will clear the
screen and display:

OSS OS/A+ ATARI VERSION x.xx
Dl: <cursor>

The Dl: is the command prompt. It serves two purposes.
Firstly, it tells the user it is ready to accept a
command. Secondly, it is a reminder of the default
disk drive. The default drive, in this case, being the
familar file spec for drive 1.

2.6 DISK FILES AND FILENAMES

Most CP commands and parameters deal with files of one
sort or another. OS/A+ requires files be specified
with a filename of the form:

<device>: <optional-file-name>

The file-specifier may be any valid file name and may
contain the "wild-card" characters '?' and '*' A
question mark ('?') will match any character in a file
name, while an asterisk ('*') will match any string of
zero or more characters. For example, DIR *AB.C??
will match and list XAB.CXX AB.CUR BEOBAB.CNN etc.

The rules for valid file names are:
- Version 2

One to Eight characters optionally
followed by a period and a one to three
character extender.
- Only characters A-Z and 0-9 are allowed.
Also, the first character must be
alphabetic.

Version 4
- One to Thirty characters
- All characters are valid except CTRL
characters, RETURNs, and commas (,).

NOTE: under version 4 of OS/A+ the file spec necessary
to refer to all files on a disk is just "*", not "* *"

--6--

Device names under OS/A+ are very simplistic: they
consist of a single letter optionally followed by a
single digit used to define a specific device when more
than one of the same kind exist (Ex.- Dl: or D2:).
Traditionally (and, in the case of Atari disk files, of
necessity) the device name is followed by a colon. The
following devices are implemented under standard OS/A+:

E: The
console

keyboard/screen
output.

editor device. The normal

K: The keyboard alone.
editing of user input.

Use this device to bypass

S: The screen alone. Can be either characters (ala E:)
or graphics.

P: On the Atari, the printer.
driver allows only one printer.

C: The cassette recorder.

The standard device

D: The disk file manager, which also usually requires a
file name.

Other device names are possible (e.g., for RS-232
interfaces), and in fact the ease with which other
devices may be added is another mark for the claim that
OS/A+ is a TRUE operating system. The structure of
device drivers is material for a later section (8.4),
but we should like to point out that, on the Atari, the
OS ROM includes drivers for all the above except the
disk.

To work with the disk file TEST.ORG on disk drive
number 1, the operating system requires that the file
spec Dl:TEST.ORG be used. Having to always specify the
Dl: can be tedious, especialy if most of the user's
file work is on a single drive, CP is designed to
prefix all filenames appearing in a CP command line
with the default drive - if and only if a device has
not been explictly specified. In the case of
Dl:TEST.ORG, the user could enter only TEST.ORG for a
file name and allow CP to prefix it with the default
drive. Thus TEST.ORG becomes Dl:TEST.ORG in the OS/A+
system. If TEST.ORG happened to be on drive two and
the default drive was drive one, the user could enter
D2:TEST.ORG: and CP would see that the user has
explicitily specified a device and would thus not
append the default drive device to that file name.

--7--

If the user needs to work a great deal with files on
drive two, he can change the default drive to avoid the
now necessary D2: prefix typing. When the system
prompts Dl:<cursor>, the user can respond with
D2:<return> to change the default drive to the D2:
device. The next CP prompt line will show D2:<cursor>.
Now files accessed on drive one will require the
explict Dl: prefix typing, while files on drive two
will not require prefix typing. Only devices of the
form Dn: (where n = 0-7) are allowed as default drives.
OS/A+ does not check to insure that the new default
drive actually exists. The user's first indication of
an invalid default drive will occur when OS/A+ attempts
to access a file on the invalid device (via user
ccmrnand). The error message "INVALID DEVICE" will
indicate the situation. The user should then set the
default device to a valid disk unit. The default
device change command is one of the many intrinsic CP
commands.

2.7 CP Commands

CP has three general classes, or groups, of commands.
The classes are intrinsic commands, extrinsic commands,
and execute commands. Intrinsic commands are executed
by means of resident code that got loaded into the
system when OS/A+ was booted up. Extrinsic commands
are commands that are external to the system. That is.
the code that is used to execute the command must be
loaded into the system from the disk at the time the
command is issued. The Execute subset of commands
provide for the batch execution of both intrinsic and
extrinsic CP commands from a particular file.

The intrinsic commands are explained and defined in
Chapter 4, and the extrinsic commands may be found in
Chapter 5. Since the execute commands are a subset of
the intrinsic they may be found in Chapter 4 too, and
will be noted as useful in execute files. They are
also discussed in Section 6.3.

--8--

CHAPTER 3: HOW TO

Section 3.1

GLOSSARY

Words you need to understand before you begin reaoing
this manua 1.

Version 2 The name for our operating system that
is upward compatible with Atari DOS
2.0s, with some added features such as
the ability to handle double density.

Version 4 The name for our
Operating System.

advanced Disk

Single density A stanoaro for storing
oiskette. Atari 810 disk
single density disk drives.

data on a
drives are

Double Density Twice the standard.
diskette will store
data stored on
diskette.

A double density
twice the amount of
a single density

Double Sided

Single drive

Double drive

A disk drive able to use both sioes of
a diskette to store data.

A hardware unit that can hold only one
diskette at a time.

A hardware unit that can halo two
diskettes at one time.

System diskette A diskette that contains the disk
operating system and all, some or none
of the utilities that are used with it.

Master diskette The original diskette that comes with
your disk drive. Any diskette
duplicated from this diskette would
also be called a master diskette.

Boot, Booting Putting a system diskette in the number
I disk drive and turning on the system.

--9--

fOl: }

**.*

[RETURN]

Anything that is between these braces
is meant to be a prompt by the
computer. For example, the instruction
/ Type (Ol:}CONFIG 20 / means that with
the 01: prompt on the screen you would
type in CONFIG 20.

This is the universal filename. When
you see this filename in a command line
it can be replaced by any and all other
filenames. For example, the command
line / COPY 01:**.* 02: / means that
all the files on the diskette in drive
1 will be copyed to the diskette in
drive 2.

This symbol represents a carriage
return. Whenever it is encountered
push the RETURN key on the keyboard.

--10--

Section 3.2

BOOTING the MASTER DISKETTE

STEP BY STEP:

1) Configure drive(s) (via switches etc) according to
manufacturer's directions.

2) Insert an OS/A+ master diskette in drive 1 and close
the door (make sure master diskette has write
protect tab in place.)

3) Turn on the drive(s). Wait for the motor to stop.

4) If you will be using a cartridge based systems
language (e.g., OSS BASIC or OSS ACTION! or Atari
Basic), insert the cartridge in the computer.

5) Turn ON the computer.

6) Wait. Watch and read the screen. (Remember if the
screen information is scrolling too fast you may
pause by hitting CNTL-l. See Atari's Operator
Manual.)

COMMENTARY:

For those of you who own Percom, Software Publishers,
Rana or Micro Mainframe disk drives, the switch
settings for the master drive (Drive 1, Dl:) are not
important. When the OS/A+ master diskette is inserted
into drive 1 and the machine turned on, the drive will
sense the density of the diskette and configure itself
properly.

The Atari 810 disk drive operates in single density
mode only. When using OS/A+ Version 2 with these
drives, step 1 should be omitted.

For all versions of OS/A+, you will notice that as the
system is booting some lines of inverse video are being
written to the screen. These are from a file called
STARTUP.EXC, and is part of the booting operation (more
on this file later).

When the system has completed executing the STARTUP.EXC
file you will be looking at a menu. At this point you
may choose one of the numbers to do a particular
command or answer with the number 9 to get control of
the system.

--11--

In any case, when the Dl: prompt appears you have been
given control of the operating system, and the boot
process will have been completed.

NOTE: the CNTL-l sequence is executed by pushing down
the CTRL key on the left side of the keyboard and at
the same time pushing down the number 1 key.

--12--

Section 3.3

Booting up directly into a BASIC program

STEP BY STEP:
1) Boot master diskette
2) If you want the startup file on another disk, place
that disk in the drive at this time.

3) Type the command:
[Dl:}TYPE E: Dl:STARTUP.EXC [RETURN]

The first three steps above are required to create the
STARTUP.EXC file. When these steps have been executed
the screen will be blanked out and the cursor will be
in the top left hand corner of the screen. You are now
ready to enter the STARTUP.EXC command line.

4) Type the command:

DO CAR;RUN"D:MENU" [RETURN]

Note the filename MENU is a fictitious filename.
Please replace this name with a name of a program
that is on your disk. Also note that your BASIC
program must also have been SAVEd to the disk before
it can be used in a STARTUP.EXC file.

5) Type the character:
(cntl-3)

To perform the CNTL-3 function, press the key marked
CTRL on the left hand side of the keyboard while at
the same time pressing down the number 3 key. When
step 5 has been executed the file STARTUP.EXC will
actually be written to the disk and control will go
back to the operating system and the Dl: prompt.

6) In answer to the Dl: prompt type DIR, to get a
directory of the disk. Now if any of the files
listed below are not on your diskette, the
STARTUP.EXC file will not work properly.

DOS.SYS
DO.COM
STARTUP.EXC
your BASIC program file that was used in the

STARTUP.EXC file

--13--

7)
Last but not least, before you tryout this newly
created diskette by switching the power off and on,
make sure the BASIC cartridge is in it's proper
slot.

COMMEMTARY

The theory behind the STARTUP.EXC file is to make a
diskette boot up and .execute a program automaticly. Of
course most people will be using this with the BASIC
cartridge and BASIC programs as shown in the above
example. For those of you with Atari DOS the
STARTUP.EXC file operates along the same principles as
the AUTORUN.SYS file.

--14--

Section 3.4

DUPLICATING A DISKETTE

Version 2, with one disk

STEP BY STEP

1) Boot master diskette
2) For Software Publishers disk drives only:

Type the command:
(Dl:}CONFIG lS[RETURN]

3) Type the command:
(Dl:}DUPDSK[RETURN]

To the following prompts answer as shown:
4) {SOURCE DISK DRIVE (1,2,3,4):} l[RETURN]
5) {DESTINATION DISK DRIVE (1,2,3,4):} lrRETURN]
6) {FORMAT DESTINATION DISK (y OR N):} yrRETURN]
7) {Put Source Disk in Drive 1

When Ready, Hit RETURN} rRETURN]
8) Swap source and destination disks as directed by

prompts.

COMMENTARY:

Duplicating a diskette with a single disk drive is a
little more time consuming than with two disk drives
but no less accurate. To begin with, boot the OS/A+
version 2 master diskette. If you are using the
Software Publisher disk drive then you must proceed
with step 2 since some of these disk drives do not
remain in the single density mode when booted.

Once the system is booted and configured properly, the
duplicate diskette command can be given (step 3).
Remember, the master diskette must still be in drive 1
when the [RETURN] is typed in step 3, otherwise a FILE
NOT FOUND error will occur. After the DUPDSK utility
has been loaded from the master diskette you'll notice
the prompt as in step 4. This prompt is asking you
what disk drive your source diskette will be in.
Follow step 4's answer and don't worry if your source
is not in drive 1 yet; the program will wait for you to
insert it before it starts duplicating (step 7).

Since this is a single drive duplication, the
destination disk drive will also be drive 1 (Step 5).

--15--

disks. At this time take
insert your destination
DUPDSK will format the
Then the duplication

The prompt in step 6 is used in case your destination
disk is new. We recommend that, whether your disk is
new or not, you answer the prompt in step 6 with a
Y[RETURN]. Formatting an oln diskette that has already
been used before will guarantee that all the old files
have been completly erased.

Step 7 is where you may take out the master diskette
and insert the diskette that you wish to duplicate.
After the rRETURN] in step 7, the DUPDSK program takes
control and reads in as much of the disk as possible.

When the prompt:

Put Destination Disk in Drive 1
When Ready, Hit RETURN

appears it is time to swap
out your source diskette and
diskette and hit [RETURN).
diskette before writing to it.
process will begin.

Note: It might be a good idea to label the diskettes
before you start so that the possibility of mixing up
your SOURCE and DESTINATION diskettes is greatly
reduced.

--16--

Version 2 with two disk drives

STEP BY STEP:

1) Boot master diskette
2) For Software Publishers disk drives only:

Type the command:
(Dl:}CONFIG IS[RETURN]

3) Type the command:
(Dl:}CONFIG 2S[RETURN]

4) Type the command:
(Dl:)DUPDSK[RETURN]

To the following prompts answer as shown:
5) (SOURCE DISK DRIVE (1,2,3,4):) l[RETURN]
6) (DESTINATION DISK DRIVE (1,2,3,4):) 2rRETURN]
7) (FORMAT DESTINATION DISK (y OR N):) Y[RETURN]
8) (Put Source Disk in Drive 1

Put Destination Disk in Drive 2
When Ready, Hit RETURN} [RETURN]

COMMENTARY:

First boot a system diskette. For those of you with
Atari disk drives, go to to step 4.

If you have a Software Publishers disk drive you
first configure drive 1 (See step 2).

If you have a non-Atari drive that is software
configurable, you must configure drive 2 accordingly
(step 3). Remember, version 2 can also handle double
density, and some drives support two or more densities.
Non-Atari disk drive users should be very careful to
make sure both drives are configured properly.

Once the drives are properly configured (if necessary),
the duplicate diskette command can be given (step 4).
Remember, the master diskette must still be in drive 1
when the [RETURN] is typed in step 4; otherwise a FILE
NOT FOUND error will occur.

After the DUPDSK utility has been loaded from the
master diskette you'll notice the prompt as in step 5.
This prompt is asking you what disk drive your source
diskette will be in. Follow step 5's answer and don't
worry if your source diskette is not in drive 1 yet,
the program will wait for you to insert it before it
starts duplicating (step 8).

Since this is a two drive duplication, the destination
disk drive will be drive 2 (Step 6).

--17--

The prompt in step 7 is used in case your destination
disk is new. We recommend that whether your disk is
new or not, you answer the prompt in step 7 with a
Y[RETURN]. Formatting an old diskette that has already
been used before will guarantee that all the old files
have been completly erased.

In step 8 you take out the master diskette and insert
the diskette that you wish to duplicate. After the
[RETURN] in step 8, the DUPDSK program takes control
and within a minute or so the diskette in drive 2 will
have an exact duplicate of the diskette in drive 11

--18--

Version 4, with one disk drive

STEP BY STEP:

1) Boot master diskette
2) For Software Publisher disk drives only:

Type the command:
(Dl: JCONFIG 2D[RETURN]

3) Type the command:
[Dl: JDUPDSK(RETURN]

To the following prompts answer:
4) [SOURCE DISK DRIVE (1,2,3,4):J Type l[RETURN]
5) [DESTINATION DISK DRIVE (1,2,3,4):JType l[RETURN]
6) DESTINATION DISK (y OR N):JType
7) [Put Source Disk in Drive 1

When Ready, Hit RETURNJ [RETURN]

COMMENTARY:

The process used for duplicating a Version 4 diskette
on a single drive, is very similar to the process for
duplicating a diskette for a Version 2 single drive.
First boot the Version 4 master diskette.

If you have a Software Publishers disk drive you must
first configure the drive (See step 2).

With the master diskette still in drive 1,
duplicate diskette command (step 3).

issue the

After the DUPDSK utility has been loaded from the
master diskette you'll notice the prompt as in step 4.
This prompt is asking you what disk drive your source
diskette will be in. Follow step 4's answer and don't
worry if your source diskette is not in drive 1 yet;
the program will wait for you to insert it before it
starts duplicating (step 7).

Since this is a single drive duplication, the
destination disk drive will also be drive 1 (Step 5).

The prompt in step 6 is used in case your destination
disk is new. We recommend that whether your disk is
new or not, you answer the prompt in step 6 with a
Y[RETURN]. Formatting an old diskette that has already
been used before will guarantee that all the old files
have been completly erased.

In step 7 you take out the master diskette and insert
the diskette that you wish to duplicate. After the
[RETURN] in step 7, the DUPDSK program takes control
and reads in as much of the disk as possible.

--19--

When the prompt:

Put Destination Disk in Drive 1
When Ready, Hit RETURN

appears it is time to swap diskettes. At this time
take out your source diskette and insert your
destination diskette and hit [RETURN]. Before DUPDSK
starts writing to the diskette, it will format it.
Then the duplication process will begin. (Note: It
might be a good idea to label the diskettes before you
start so that the possibility of mixing up your SOURCE
and DESTINATION diskettes is greatly reduced.)

--20--

Version 4 with two disk drives

STEP BY STEP

1) Boot master diskette
2) For Software Publishers disk drives only:

Type the command:
(Dl:}CONFIG ID[RETURN]

3) Type the command:
(Dl:}CONFIG 2DrRETURN]

4) Type the command:
(Dl:}DUPDSKrRETURNl

To the following prompts answer as shown:
5) (SOURCE DISK DRIVE (1,2,3,4):} l[RETURN]
6) (DESTINATION DISK DRIVE (1,2,3,4):} 2[RETURN]
7) {FORMAT DESTINATION DISK (y OR N):} Y[RETURN]
8) {Put Source Disk in Drive 1

When Ready, Hit RETURN} [RETURN]

COMMENTARY:
To begin with, the OS/A+ version 4 diskette must
be booted. This process will automaticly configure
most disk drives to double density. If you are not
sure about this feature of your disk drives then
proceed to step 2, otherwise go on to step 3. The
reason behind step 2 is that some disk drives (Software
Publisher, Inc.) will boot the double density master
diskette, but will not leave itself in double density
mode, thus you must configure drive 1 to double
density.

Step 3 is for everyone, there are no guarantees
booting the system what configuration drive 2 will
up as. Step 3 takes care of any problems,
configures drive 2 to double density.

when
come
and

Once the disk drives have been step up properly (if
both drives are not the same density then DUPDSK will
not work), the duplicate diskette command is ready to
be given (step 4). Remember, the master diskette must
still be in drive 1 when the [RETURN] is typed in step
4, otherwise a FILE NOT FOUND error will occur.

Once the DUPDSK utility has been loaded from the master
diskette, the prompts in steps 5,6,7 will appear.
Answer these prompts as shown above.

Step 8 is where you may take out the master diskette
and insert the diskette that you wish to duplicate.
After the [RETURN] in step 8, the DUPDSK program takes
control and within a minute or so an exact duplicate of
the disk in drive 1 will be in drive 2.

--21--

Section 3.5

Configuring the drive

This section is for people who have disk drives that
are software configurable. If you have only Atari 810
disk drive(s), ignore this section.

The CONFIG command is used to CONFIGure disk drives
that are capable of either single or double density
(or, in some cases, single or double sided) operations.

Some disk drives are capable of handling a variety of
different configurations (e.g. a double sided, double
density disk drive can usually ALSO handle single
sided, single density diskettes and single sided,
double density diskettes). In order to control the
various options available, the user must utilize the
CONFIG command.

Generally, drive 1 (the boot drive) will automatically
be configured to match the density of the boot
diskette. CAUTION: Some controllers, such as the
Software Publishers unit, do not configure the disk
drive upon boot up.

For the Software Publishers disk drives and/or any
additional non-Atari disk drive that you may have
attached to your system, the CONFIG utility should be
used to match the configuration of your disk drive(s)
to the configuration of your diskettes.

For example:

To set up disk drive 2 (D2:), so that it can
read single sided, double density diskettes,
use the following command (with the master
diskette in drive 1).

(Dl:}CONFIG 2D [RETURN]

--22--

Other examples:

A) {Dl:}CONFIG 2S [RETURN] - configure drive 2 to
be single side,
single density

B) {Dl:lcONFIG 10 [RETURN] - configure drive 1 to
be single side,
double density

C) {Dl:}CONFIG 200 [RETURN] - configure drive 2 to
be double side,
double density

CAUTION:
If you are using the OS/A+ Version 4 operating
system, DO NOT CONFIGure any disk drive to
single density. The only exceptions to this
rule are detailed under the instructions for
ADOS and COPY24.

NOTE:
Whenever the CONFIG command is used a copy of
the file CONFIG.COM must be on the diskette in
drive 1.

--23--

Section 3.6

Formatting a new Version 2 diskette:

STEP by STEP:

1) Boot master diskette
2) Type the command:

(Dl:}INIT [RETURN]
3) To the prompt:

(1) FORMAT DISK ONLY.}
(2) FORMAT DISK AND WRITE DOS.SYS.}
(3) WRITE DOS.SYS ONLY.}
(4) RETURN TO OS/A+.}

(ENTER FUNCTION NUMBER: <CURSOR>}
Type, 2 [RETURN]

4) To the prompt:
(ENTER DRIVE (1,2,3 OR 4): <CURSOR>}

Type, l[RETURN]

5) To the prompt:
(FUNCTION 2; DRIVE 1}

(ARE YOU SURE (y OR N): <CURSOR>}

Insert a brand new diskette in drive 1 and Type
YrRETURN].

COMMENTARY

The process for formatting a brand new diskette is not
as complicated as it looks. The numerous prompts are
there to help guide you in creating this new diskette,
and not to cause you confussion.

As with all our previous examples, the first step is to
boot the OS/A+ Version 2 master diskette. The reason
for this is that the proper utility for formatting a
new diskette (INIT.COM) will always be on this
diskette.

When the master diskette has finished booting and the
Dl: prompt is on the screen, you are ready to issue the
following command (step 2):

(Dl:}INIT [RETURN]

--24--

The INIT command will cause the INIT.COM utility to
load off the master diskette and issue the following
prompt,

1) FORMAT DISK ONLY.
2) FORMAT DISK AND WRITE DOS.SYS.
3) WRITE DOS.SYS ONLY.
4) RETURN TO OS/A+.

These four options of the INIT command allow the user
some versatility in creating a new diskette. OPTION 1,
will just format the diskette. This disk would more
than likely be used to back up programs already on
other diskettes. OPTION 2, is used to create a
bootable diskette (writting the file DOS.SYS makes the
diskette bootable). OPTION 3 would only be used if the
diskette being inserted into the drive is already
formatted. And of course option 4 allows a quick exit
in case you change you mind.

We will choose option 2, to create a brand new bootable
diskette. So, to the prompt:

ENTER FUNCTION NUMBER:

enter the number 2 and hit [RETURN].

Now that the system knows what you wanL to do (format
diskette and write DOS.SYS) it has to know where you
want to do it (what disk drive). This question gets
answered with the following prompt:

ENTER DRIVE (1,2,3 OR 4):

Drive 1 is where this process will take place, so enter
1 [RETURN].

The computer now has all the information it needs to
know for creating the new diskette, but before it
starts, it will issue the following prompt to confirm
your choices and allow you to insert your new diskette.

FUNCTION 2; DRIVE 1

ARE YOU SURE (y OR N):

If the function and drive number are not correct then
type N[RETURN]. If the function and drive number are
correct then remove the OS/A+ master diskette and
insert your brand new diskette in drive 1. Now answer
the question with a Y[RETURN] and within a minute or so
a brand new bootable diskette will be in drive 1.

NOTE: Once a diskette has been formatted the user may
copy any file to this diskette.

--25--

Section 3.7

Formatting a new Version 4 diskette:

STEP by STEP:

1) boot OS/A+ Version 4 master diskette.

2) Type the command:
[Dl:}INIT [RETURN]

3) To the prompt:
DRIVE NUMBER ?

Type, 1 [RETURN]

4) To the prompt :
INSERT DISK INTO DRIVE 1
AND HIT RETURN WHEN READY

Remove your master diskette and insert a brand new
double density diskette and type l[RETURN].

5) To the prompt:
INITIALIZATION COMPLETE
INIT ANOTHER DISK?

Type N[RETURN]. This causes control to pass back to
the operating system

6) Remove newly formatted diskette and reinsert OS/A+
master diskette.

7) Type the command:
(Dl:}COPY Dl:DOS.SYS Dl: -SW[RETURN]

8) To the following prompt:
Insert disk(s) to be copied
and hit return when ready

just type [RETURN]

9) To the following prompt:
Insert 'to' disk and hit return

Put your newly formatted diskette in drive 1 and type
[RETURN]

--26--

As with all our
boot the OS/A+
for this is
new diskette
diskette.

COMMENTARY:

previous examples, the first step is to
Version 4 master diskette. The reason
that the proper utility for formatting a
(INIT.COM) will always be on this

When the master diskette has finished booting and the
Dl: prompt is on the screen, you are ready to issue the
following command:

{Dl:}INIT [RETURN]

This command will cause the INIT.COM utility to load
off the master diskette and issue the following prompt:

DRIVE NUMBER ?

This prompt is asking, in what disk drive will the
format process be performed. Answer this prompt with a
l[RETURN], for disk drive number 1.

Now that the system knows what it is doing (formatting
a new double density diskette), and where it will be
doing it (disk drive number 1), the next prompt will be
issued.

INSERT DISK IN DRIVE 1
AND HIT RETURN WHEN READY

It is now time to remove your OS/A+ master diskette and
insert you brand new double density disk. When you hit
[RETURN] the system will start formatting the diskette
in drive 1, so be sure to remove the master first
before hitting [RETURN]

When the initialization is complete the system issues
the next prompt.

INITIALIZATION COMPLETE
INIT ANOTHER DISK?

Type N[RETURN] to get control of the operating system.
With the Dl: prompt on the screen, remove your newly
formatted diskette and place it aside for a moment.
Now reinsert your OS/A+ master diskette and type the
following command:

{Dl:}COPY Dl:DOS.SYS Dl: -SW [RETURN]

--27--

•

Even though you have formatted this new diskette you
have set aside, it will not boot until the file DOS.SYS
has been copyed to it. Executing the command above
causes the COPY.COM utility on the master diskette to
load in to the system, and issue the following prompt:

Insert disk(s) to be copied
and hit return when ready

Since the file DOS. SYS is already on, your master
diskette, there is no need to insert another source
diskette. So with the master diskette still in drive I
answer the prompt above with a [RETURN].

Answering the above prompt with a [RETURN] cause the
file DOS.SYS located on the master diskette to be read
into memory. When the file DOS.SYS have been completly
read into memory the prompt below will be issued.

Insert 'to' disk and hit return

When this prompt appears on the screen, remove your
master diskette from drive I and insert your newly
formatted double density diskette you set aside. Once
the destination diskette has been inserted type a
[RETURN]. This will cause the file DOS.SYS to be
written to this new diskette. With this complete the
diskette in drive 1 in now bootable.

--28--

Section 3.8

Copy files with only one drive

STEP BY STEP:

1) Boot master diskette
2) Type the command:

(Ol:}COPY 01:**.* 01: -SWQ [RETURN]
3) To the following prompt:

Insert disk(s) to be copied
and hit return when ready

insert your source disk in drive 1 and hit [RETURN]
4) Follow the prompts answering either Y or N with a

[RETURN].

COMMENTARY:

The COPY command is used to copy a single file or
mutiple files from one disk to another. But, before
you can do any copying you must put a disk in drive 1
that has a copy of the utility COPY.COM, whether the
files you want to copy are on that disk or not. This
is done by using the master diskette.

Now, with the master diskette in drive 1, the command
line (step 2) can be issued to the operating system.
This command line,

(Ol:}COPY 01:**.* 01: -SWQ [RETURN]

tells
drive
disk)
disk.

the computer to COPY all the files on the disk in
1 (source disk) to another disk (destination
that you will be subsituting with the source

the command line, called
some information about
-S flag tells the COPY
drive COPY. If you have
flag must always be used.

The letters at the end of
flags, give the copy utility
this particular copy. The
utility that this is a single
only one disk drive the -S

The -W flag, tells the system to Wait before it
actually starts to perform the copy. Remember, that in
step 1 the master diskette is in drive 1. If the -W
flag is not used in step 2 the system will load the
COpy utility off the master diskette and assume that
the master diskette is also your source diskette for
COPYing. When the -W flag is used the COpy utility is
loaded from the master diskette and the system will
Wait for you to insert the proper source diskette.

--29--

The -Q flag when used, forces the system to Query
(question) the user as to whether the file should be
COPYed or not. A prompt, like the one below will ask
the user about COPYing the file. This prompt can be
answered with either a Y[RETURNl or N[RETURN].

COpy DI:filename
TO Dl:filename?

If you answer Y[RETURN] then that particular file will
be read into the computers memory. Once the file has
been read into memory, the computer will prompt you to
subsitute your destination disk for the source disk.
After you have completed the sUbsitution and hit
[RETURN], the file will now be COPYed to you
destination disk.

If you type N[RETURN] then the system will respond:

Dl:filename NOT COPIED

This is just to confirm the fact that this particular
filename was not copied to the destination disk.

For single file copies with I drives use the command
line:

COpy DI:source-filename D2:

this example expects to see the file COPY.COM as well
as your source filename on the same disk. If your
source filename is on another disk, then you must use
the -W option so that after the COPY utility is read in
it will Wait for you to swap disks.

Single drive users please DON'T:

1) Copy the file DOS.SYS without first renaming
it. (OS/A+ Version 2 users only)

2) Use wild card characters in the destination
filename

3) Use the COpy command without first having a
copy of COPY.COM on your disk

--30--

COPY with 2 drives

STEP BY STEP:
Configurable drive users with OS/A+ Ver 4

1) Boot master diskette
2) Type the command:

(Ol:}CONFIG 20 [RETURN]
3) Type the command:

(Ol:}COPY 01:**.* 02: -WQ [RETURN]

Configurable drive users with OS/A+ Ver 2
1) Boot master diskette
2) Type the command:

(ol:lcONFIG 2S [RETURN]
3) Type the command:

(Ol:}COPY 01:**.* 02: -WQ [RETURN]

Atari 810 Users with OS/A+ Ver 2
1) Boot master diskette
2) Type the command:

(ol:lcOPY 01:**.* 02: -WQ [RETURN]

COMMENTARY:

You will notice that in all three examples above, the
first step is to boot the master diskette. The reason
for this is that the utility COPY.COM will always be on
this diskette, and before we do any COPYing we must
first load the COPY.COM utility. So whether you are
using Atari disk drives or Percoms please boot the
master diskette before any COPYing is performed.

In our Percom examples above, you will notice that Step
2 uses the CONFIG command. This command is used to
make sure that your destination disk drive (02:) is
configured the same as your source disk drive (01:).
In fact after the CONFIG command is executed a chart
will be printed on the screen so that you can see that
both disk drives have the same configuration. In the
example with the Atari disk drive there is no CONFIG
command because the Atari disk is non-configurable.
Because of this you cannot use the 810 disk drive and
the COPY command with OS/A+ Version 4.

Once

line
your

the disk drive has been configured properly the
command is ready to be executed. The COpy command
in all these examples, will copy all the files on
diskette in drive 1 to the diskette in drive 2.

--31--

The letters at the end of the command line, called
flags, give the copy utility some information about
this particular copy. The -W flag, tells the system to
Wait before it actually starts to perform the copy.
Remember, that in step 1 the master diskette is in
drive 1. If the -W flag is not used in step 3 the
system will load the COpy utility off the master

diskette and assume that the master diskette is also
your source diskette for COPYing. When the -W flag is
used the COpy utility is loaded from the master
diskette and the system will Wait for you to insert the
proper source diskette.

The -Q flag when used, forces the system to Query
(question) the user as to whether the file should be
COPYed or not. A prompt, like the one below will ask
the user about COPYing the file. This prompt can be
answered with either a Y[RETURN] or N[RETURN].

COPY Dl:filename
TO Dl:filename?

If you answer Y[RETURN] then that particular file will
be COPYed to the diskette in drive 2.

If you type N[RETURN] then the system will respond:

Dl:filename NOT COPIED

This is just to confirm the fact that this particular
filename was not copied to the destination diskette.

--32--

Section 3.9

Use of COPY24 with one disk drive

STEP BY STEP:

1) Boot OS/A+ Version 4 master diskette
2) Type the command:

{Dl:}ADOS [RETURN]
3) Type the command:

(Dl:}COPY24 Al:**.* Dl: -Q [RETURN]
To the following prompt:

Insert disk(s) to be copied
and hit return when ready

4) Insert Atari DOS or OS/A+ Version 2 diskette

COMMENTARY:

This utility is for users with OS/A+ Version 4 only.
If you are using another version of the operating
system please skip this section, as it does not apply
to you.

The COPY24 utility is for file conversion. Since OS/A+
Version 4 has a file structure different from Atari DOS
2.0S and OS/A+ Version 2, files created under the later
two 2 systems must be converted before they will work
under the Version 4 system.

To convert either Atari DOS or OS/A+ Version 2 files to
the OS/A+ Version 4 system, begin with booting the
master diskette. Doing this eliminates the need to go
searching for the particular utilities that are needed
for the conversion.

To do this conversion the utility ADOS must first be
loaded into the system (step 2). ADOS is actually the
file manager that is part of the Atari DOS and OS/A+
Version 2 operating system and will be used to read
files from those diskettes so that they can be
converted.

Once ADOS has been loaded the actual command line for
the conversion can be issued to the system (step 3).
This command line,

{Dl:}COPY24 Al:**.* Dl: -Q [RETURN]

--33--

tells the computer that ALL the files on either your
Atari DOS diskette or OS/A+ Version 2 diskette are to
be converted and written to your OS/A+ Version 4
diskette. Also notice, that the (Al:**.*) and not Dl:,
is used to specify the Atari DOS or OS/A+ Version 2
files. Using this convention also tells the system
that it must first reconfigure the disk drive to single
density before it can read anything from the diskette
known as AI:

After the COPY24 utility has been load the following
prompt will be issued.

Insert disk(s) to be copied
and hit return when ready

At this time you will insert your Atari DOS or OS/A+
Version 2 diskette in drive 1. When you type the
[RETURN] the system will reconfigure itself to single
density and begin to read the Atari DOS or OS/A+ single
density diskette.

The letter at the end of the command line, called a
flag, give the COPY24 utility some information about
this particular conversion.

The -Q flag when used, forces the system to Query
(question) the user as to whether the file should be
COPYed or not. A prompt, like the one below will ask
the user about COPYing the file. This prompt can be
answered with either a Y[RETURN] or N[RETURN].

COPY Al:filename
TO Dl:filename?

If you answer Y[RETURN] then that particular file will
be read into the computers memory. Once the file has
been read into memory, the computer will prompt you to
subsitute your double density OS/A+ Version 4
destination diskette for the source diskette. After
you have completed the subsitution and hit [RETURN],
the file will now be converted and COPYed to your
destination diskette.

If you type N[RETURN] then the system will respond:

AI: filename NOT COPIED

This is just to confirm the fact that this particular
filename was not copied to the destination diskette.

--34--

For single file copies with 1 drive use the following
command line after the ADOS utility has been loaded:

COPY24 AI:source D1:destination

This form (where "source" must be the name of a single
density Atari DOS or OS/A+ Version 2 file and
"destination must be the name of your double density
OS/A+ Version 4 diskette) expects to see the file
COPY24.COM on your OS/A+ Version 4 diskette that is in
drive 1.

Single drive users please DON'T:

1) Copy the file DOS.SYS with COPY24
2) Use wild card characters in the destination

filename
3) Use the COPY24 command without first having a

copy of COPY24.COM on your diskette
4) Use the COPY24 utility without first loading

the ADOS utility.
5) Use the CONFIG command for single drive

copying. COPY24 performs the configuration to
single density immediately before copying the
file.

--35--

USE of COPY24 with 2 drives

STEP BY STEP:
1) Boot OS/A+ Version 4 master diskette
2) Type the command:

(Ol:)CONFIG 2S[RETURN]
3) Type the command:

(Ol:)AOOS[RETURN]
4) Type the command:

(01:)COPY24 A2:**.* 01: -WQrRETURN]

COMMENTARY:

This utility is for users with OS/A+ Version 4 only.
If you are using another version of the operating
system please skip this section, as it does not apply
to you.

As is the case with all our examples, the first step is
to boot the master diskette. The reason for using this
diskette is that all the utilities provided with the
operating system are on this diskette.

If we are going to copy a single density file to a
double density file, one of the disk drives must be
configured single density. This is done is step 2 with
the CONFIG command. After this command has been
executed, you will notice that the chart printed on the
screen looks like this:

drive

1
2

no. sides

1
1

density

double
single

This means that drive 1 will be expecting to see a
single sined double density diskette, while drive 2
will be expecting to see a single sided, single density
diskette. In other words you will be putting your
OS/A+ Version 4 diskette (destination diskette) in
drive I and your OS/A+ Version 2 or Atari DOS 2.0s
diskette (source diskette) in drive 2.

To do this conversion the utility ADOS must first be
loaded into the system (step 2). ADOS is actually the
file manager that is part of the Atari DOS and OS/A+
Version 2 operating system and will be used to read
files from those diskettes so they can be converted.

--36--

Once ADOS has been loaded the actual command line for
the conversion can be issued to the system (step 3).
This command line,

COPY24 A2:**.* Dl: -WQ[RETURN]

tells the computer that ALL the files on either your
Atari DOS diskette or OS/A+ Version 2 diskette are to
be converten and written to your OS/A+ Version 4
diskette. Also notice, that the (A2:**.*) ann not D2:,
is used to specify the Atari DOS or OS/A+ Version 2
files. Using this convention also tells the system
that the diskette known as A2: is single density.

After the COPY24 utility has been load the following
prompt will be issued.

Insert disk(s} to be copied
and hit return when ready

At this time you would insert your Atari DOS or OS/A+
Version 2 diskette in drive 2 and your OS/A+ Version 4
diskette in drive 1. (Note: we would suggest that a
newly initialized OS/A+ Version 4 diskette be placed in
drive 1 at this time.)

The letters at the end of the command line, called
flags, give the copy24 utility some information about
this particular copy. The -W flag, tells the system to
Wait before it actually starts to perform the
coversion. Remember, that in step 1 the master
diskette is in drive 1. If the -W flag is not used in
step 4 the system will loan the COPY24 utility off the
master diskette and assume that the master diskette is
also your destination diskette for the converted files
When the -W flag is used the COPY24 utility is loaded
from the master diskette and the system will Wait for
you to insert the proper source and nestination
diskettes.

The -Q flag when used, forces the system to Query
(question) the user as to whether the file should be
converted or not. A prompt, like the one below will
ask the user about converting the file. This prompt
can be answered with either a Y[RETURN] or N[RETURN].

COpy Dl:filename
TO Dl:filename?

If you answer Y[RETURN] then that particular file will
be converted and written to the OS/A+ Version 4
diskette, in drive 1.

--37--

If you type N[RETURN] then the system will say:

Al:FILENAME NOT COPIED

This is just to confirm the fact that this particular
filename was not copied to the destination disk.

Please DON'T:

1) Copy the file DOS.SYS with COPY24
2) Use wild card characters in the destination

filename
3) Use the COPY24 command without first having a

copy of COPY24.COM on your diskette
4) Use the COPY24 utility without first loading

the ADOS utility.

--38--

STEP BY
1) Boot
2) Type

Section 3.10

Single density to Double density copy (SDCOPY)
with 1 drive

STEP
OS/A+ Version 2 master diskette
the command
(Dl:}INITDBL[RETURN]

3) Remove master diskette and insert a blank disk
into drive 1.

4) To the following prompts answer as shown:
DRIVE TO INITIALIZE? l[RETURNJ
INSERT DISK AND HIT RETURN [RETURN]

5) Reinsert master diskette
6) Type the command:

(Dl:}SDCOPY Dl:**.* Dl: -WQ [RETURN]
7) To the following prompt answer as shown:

Insert disk(s) to be copied
and hit return when ready[RETURN]

COMMENTARY

This command is for OS/A+ Version 2.1 users only. If
you are not using this version of the operating system
please skip this section.

The utility SDCOPY is used to make double density
copies of your single density files. However, before
SDCOPY can be used correctly, the user must first set
up properly.

To begin with, boot the OS/A+ Version 2.1 diskette.
Doing this eliminates the need to go searching for the
diskette that has the proper utilities on it.

With the master diskette in drive 1 use the INITDBL
command to create a double density formatted diskette
(steps 2-6). When the prompt in step 4 appears insert
a brand new double density diskette, then hit [RETURN].

When the disk drive motor turns off, take
newly formatted double density disk and lay
side. This diskette will be your destination
when using the SDCOPY utility.

out your
it to the
diskette

Reinsert your OS/A+ Version 2.1 master diskette, and
type the command line in step 6. This command line.

(Dl:}SDCOPY Dl:**.* Dl: -WQ [RETURN]

--39--

tells the computer to COPY all the files on the disk in
drive 1 (source diskette) to your double density
diskette (destination diskette) that you will be
subsituting with the source diskette.

The letters at the end of the command line, called
flags, give the SDCOPY utility some information about
this particular copy. The -W flag, tells the system to
Wait before it actually starts to perform the copy.
Remember, that in step 5 the master diskette is in
drive 1. If the -W flag is not used in step 6 the
system will load the SDCOPY utility off the master
diskette and assume that the master diskette is also
your source diskette for COPYing. When the -W flag is
used the SDCOPY utility is loaded from the master
diskette and the system will Wait for you to insert the
proper source diskette.

The -Q flag when used, forces the system to Query
(question) the user as to whether the file should be
COPYed or not. A prompt, like the one below will ask
the user about COPYing the file. This prompt can be
answered with either a Y[RETURN] or N[RETURN].

COpy Dl:filename
TO Dl:filename?

If you answer Y[RETURN] then that particular file will
be read into the computers memory. Once the file has
been read into memory, the computer will prompt you to
subsitute your double density destination diskette for
the source diskette. After you have completed the
subsitution and hit [RETURN], the file will now be
COPYed to you destination diskette.

If you type N[RETURN] then the system will say:

Dl:FILENAME NOT COPIED

This is just to confirm the fact that this particular
filename was not copied to the destination diskette.

For single file SDCOPies use the command line:

SDCOPY Dl:source filename Dl:

this example expects to see the file SDCOPY.COM as well
as your source filename on the same diskette. If your
source filename is on another diskette, then you must
use the -W option so that after the SDCOPY utility is
read in it will Wait for you to swap diskettes.

--40--

Single drive users please DON'T:

1) SDCOPY the file DOS.SYS without first
renaming it.

2) Use wild card characters in the destination
filename.

3) Use the SDCOPY command without first having a
copy of SDCOPY.COM on your diskette.

--41--

CHAPTER 4 - INTRINSIC OS/A+ COMMANDS

The intrinsic commands described in this chapter are
executed via code that was loaded into the system at
bootup time. These commands do not require the loading
of programs to perform their functions (as do extrinsic
commands). The following is a summary of the most
often used intrinsic commands:

DIRECTORY
PROTECT
UNPROTECT
ERASE
RENAME
LOAD
SAVE
RUN
CARTRIDGE

TYPE

- List Directory
- Protect a file (from change or erase)
Unprotect a file

- Erase (delete) a file
- Renames a file
- Load a binary file
- Save a binary file
Execute a program at some address

- Run Atari cartridge in the "A"
cartridge slot (Atari users only)

- Type a text file to the screen

(The default drive change command,
considered an intrinsic command.)

Dn: , is also

I

All intrinsic commands may be abbreviated to their fij
three characters. As a matter of fact, OS/A+ only looks
the first three characters while testing for an intrin
command. Each of the commands will be covered in det
later in this manual; however, to give you a feel of
intrinsic commands, let's look at the DIRECTORY comma
While looking at these examples, assume the DI: is
default device and has been placed on the screen by CPo

DI:DIRECTORY list all files of disk on drive one
DI:DIRECT
DI:DIRTY
DI:DIR
DI:DIR ** *
DI:DIR DI:
DI:DIR DI:**.*
DI DIR D2: list all files of disk on drive two
DI:DIR D2:**.*
DI:DIR *.OBJ files with extension .OBJ on drive one
DI:DIR D2:*.ASM files with extension .ASM on drive two

--42--

Section 4.0

command:

purpose:

usage:

arguments:

Description

@

This command begins execution of a batch
command file

@file-name

The name of a .EXC file containing CP
commands. The name should be used
WITHOUT the .EXC extension.

The @ command tells OS/A+ to begin taking commands from
a batch file. This file is a text file which may
contain both intrinsic and extrinsic OS/A+ commands.
For example, suppose the file TEST.EXC contains the
following commands:

DIR D:
DIR D2:
END

Issuing the command
@TEST

would tell OS/A+ to start taking commands from the file
TEST.EXC. At that point, a directory listing of drive
1 would be given, followed by a listing of files on
drive 2.

See sections 3.3 and 6.1 for more information on
creating and using batch files.

NOTE: The .EXC extension should NOT be given as part of
the file-name when issuing the @ command. The command
@GEORGE is sufficient to begin execution of the file
GEORGE.EXC. In fact, an error will result if the
command @GEORGE.EXC is tried.

NOTE: A CAR command, when encountered within a batch
file will stop batch execution.

--43--

Section 4.1

command:

purpose:

users:

usage:

arguments:

Description

CAR

This command transfers control to a
cartridge

Atari users only

CAR

none

The CAR command allows the user to enter a cartridge
from OS/A+. The cartridge will retain control of the
system until a DOS command is executed from the
cartridge.

CAUTION: Some cartridges do not allow DOS-type exits
and thus OS/A+ cannot be used with these cartridges.

WARNING: If no cartridge is present, using this command
may cause the keyboard to lock up, rendering the
machine useless. To rectify this condition, turn off
the computer power and reboot the system.

--44--

Section 4.2

command:

purpose:

usage:

arguments:

Description

DIRectory

The command allows the user to view the
disk directory

DIR [Dn:][file-name] [output file-spec]

optional file specifier
optional output file specifier

The DIR command searches the disk directory of the
specified disk (or the current default drive, if Dn: is
omitted) for all files matching the file-specifier.
The names of all files matching the specifier are then
printed to the screen, together with the length of the
file (in sectors). An asterisk preceding the file's
name indicates that the file is protected from erasure,
writing, or renaming.

The file-specifier may be any valid file name (see
sections on file structure) and may contain the
"wild-card" characters '?' and '*'. A question mark
('?') will match any character in a file name, while
an asterisk ('*') will match any string of zero or more
characters. For example,

DIR *AB.C??
will match and list

XAB.CXX
AB.CUR
BEOBAB.CNN
etc.

If the output file name is specified, the
listing will be sent to that file instead
screen. For example, the command

DIR Dl: P:
will send to the printer a listing of all
drive 1.

--45--

directory
of to the

files on

Section 4.3

command:

purpose:

usage:

arguments:

Description

END

Stop batch execution from within an
execute file

END

none

The END command
from a batch file
commmands. This
batch file.

causes OS/A+ to stop reading commands
and to resume prompting the user for
command has no effect outside of a

--46--

Section 4.4

command:

purpose:

usage:

arguments:

Description

ERAse

This command removes files from a disk

ERA [Dn:]file-name

a file specifier string

The ERA command permanently removes files from a disk.
All files matching the file-specifier string on the
specified drive (or the current default drive, if Dn:
is omitted) will be erased from the disk. These files
will no longer be shown when a DIR command is issued,
nor will they be available for any type of file access.

WARNING: As this command causes the irreversible
deletion of files from the disk, it should be used with
care. Use the PROtect command to guard files against
accidental erasure.

Examples:

ERASE *.BAK
will erase all files with an extension
of .BAK that are unprotected and that
reside on the current default drive.

ERA D2: DUP . SYS
will erase the file named DUP.SYS from
disk in disk drive number 2.

Notes:
If ERAse does not find any erasable files that
match the specifier, it will return a FILE NOT
FOUND error.

--47--

Section 4.5

command:

purpose:

usage:

arguments:

Description

LOAd

Load disk files into memory

LOAD [Dn:]file-name

a file specifer

The LOAD command allows the user to load binary load
image files into user memory. The files must be
compatible with the normal binary object files used by
the normal host computer operating system. That is:

For Atari users, each segment of the memory image file
must be preceeded by two addresses, the starting and
ending addresses in RAM memory of the segment. The
entire file must be preceeded by two bytes with all
bits on ($FF, $FF). This format is identical to that
produced by Atari's Assembler/Editor Cartridge and most
upgraded products (including ACT!ON and MAC/65 from
OSS) .

--48--

Section 4.6

command:

purpose:

usage:

arguments:

Description

NOScreen

Turns off command echo to screen during
batch

NOS

none

Normally, all commands encountered during batch
execution are echoed to the screen as if they were
typed in by the user. The NOS command can be used to
prevent this echo. All commands within an execute file
will then no longer be echoed until the execute file is
stopped for any reason or a SCR command is encountered.

This command only effects commands encountered in batch
mode.

--49--

Section 4.7

command:

purpose:

usage:

arguments:

Description

PROtect

This command protects files from acciden-
tal erasure, writing, or renaming

PRO [Dn:Jfile-name

a file specifier

The PRO command allows the user to protect one or more
files from any erasure, writing, or renaming. . All
files matching the file-specifier will be protected.
The system marks a protected file by placing an
asterisk next to its name whenever a DIR command is
used. The UNP command can be used to disable the
protection, when desired.

--50--

Section 4.8

command:

purpose:

usage:

arguments:

Description

REMark

Prints remarks to the screen during
batch execution

REM any characters

a string of zero or more characters

The REM command performs no operation whatsoever. Its
sole purpose is to provide a means of easily printing
messages to the screen from an executing batch file
(see section on batch execution). When encountered
during batch execution, the command line containing the
REM command will be echoed to the screen, unless the
NOScreen command has been previously issued.

--51--

Section 4.9

command:

purpose:

usage:

arguments:

Description

REName

Rename a file to a new name

REN from-file-name to-file-name

two file names

The REN command will search the specified disk (or the
default drive, if Dn: is not specified) for a file
whose name matches the specified f r om-c f i Le-cname., If
the file is found, its name will be changed to the
indicated to-file-name. An error occurs if the
from-file is not found on the disk. The to file-name
should NOT be preceeded by a disk drive specifier.

WARNING: The REName command
wild-card characters ("*", "?")
Such usage may permanently
directory.

should not be used with
in the file names.
damage your diskette

WARNING: Under version 2 and Atari Dos 2.08, it is
possible to use the rename command to create two files
with the same name. If this condition occurs, use the
COpy command with the query (-Q) option to transfer the
two files to separate disks where they may then be
renamed back.

--52--

Section

command:

purpose:

usage:

4.10

RUN

This command transfers control to an
address in memory

RUN [hex-address]

arguments:

Description

an optional hexadecimal address

The RUN command immediately causes OS/A+ to perform a
jump to the indicated address (or to the address
contained in the OS/A+ RUNLOC, if no address is given).
The hex-address, if present, must consist of 3 or 4
hexadecimal digits.

The address in RUNLOC is set any time an extrinsic
command is issued or a program is loaded using the LOAD
command. Therefore, the RUN command may be used to
reenter a program such as BASIC after leaving the
program through a DOS command.

IMPORTANT NOTE:

Most standard OS/A+ interactive system programs will
set RUNLOC to point to their warmstart entry point.
Thus, for example, if the user returns to DOS in order
to perform an INTRINSIC command, he/she may reenter the
systems program by simply typing RUN. At the current
writing, BASIC A+ and MAC/65 (for example) both follow
this protocol: simply type RUN from CP to reenter at
their warmstart points.

--53--

Section

command:

purpose:

usage:

4.11

SAVe

Save a portion of memory to a disk file

SAVE file-spec start-address end-address

arguments:

Description

a file specifier
a hexadecimal starting address
a hexadecimal ending address

The SAVE command allows the user to write portions of
memory to disk files in standard binary file format.
The two addresses define the portion of memory to be
written to disk; the second address must be greater
than or equal to the first. A file which has been
'saved' may be later returned to memory using the LOAD
command.

Example:

At the time of this writing, the BASIC A+ user with an
Atari computer having 48K Bytes of RAM could patch the
distribution copy of BASIC A+ and save the new patched
version to disk via

SAVE NEWBASIC.COM 8400 BC00

(PLEASE verify these addresses in your BASIC A+ manual;
they ARE subject to change.)

--54--

Section

command:

purpose:

usage:

4.12

SCReen

Cause batch commands to be echoed to the
screen

SCR

arguments:

Description

none

The SCR command causes
batch execution to be
command may be used to
commands.

commands encountered during
echoed to the screen. The NOS
turn off the echo of batch

This command only effects commands encountered in batch
mode.

--55--

Section

command:

purpose:

usage:

4.13

TYPe

This command types an ascii or atascii
file to the screen or another file

TYP [Dn:]file-name [output-file]

arguments:

Description

filename - the name of any text file.
output-file an optional output file.

The TYPe command allows the user to copy text files to
the screen or another file. If the optional output
file is not specified, the text file indicated will be
copied to the screen. For example, to view the
commands in the STARTUP.EXC file on your ass master
diskette, issue the command

TYP STARTUP.EXC

If the optional output fi.le is specified, the text file
will be copied to the output file. For example, to
copy the STARTUP.EXC file to the printer, issue the
command

TYP STARTUP.EXC P:

The TYPe command may also be used to copy text files
from one disk file to another by using a disk file name
as the output file.

--56--

Section

command:

purpose:

usage:

4.14

UNProtect

This command removes the protection
caused by the PRO command

UNP [Dn:]file-name

arguments:

Description

a file specifier

The UNP command allows the user to remove the write
protection caused by the PRO command so that files may
again be erased, renamed, or written to. All files
matching the file-specifier on the specified drive (or
the current default drive, if Dn: is omitted) will be
affected. These files will no longer be shown with a
preceding asterisk when the DIR command is used.

--57--

CHAPTER 5: EXTRINSIC OS/A+ COMMANDS

The extrinsic commands are programs that are run by
OS/A+. Any binary file containing the .COM extension
may be used as an OS/A+ extrinsic commano. The OS/A+
COpy command is one such extrinsic command. If you
perform the OS/A+ DIRECTORY command on the master
diskette, you will see a file named COPY.COM. The
program in the COPY.COM file is what is executeo when
the COpy command is typed.

Remember, extrinsic commands are external to the
operating system. Whenever an extrinsic commann is
executed from OS/A+, the system MUST go looking on the
diskette for a .COM file associated with the particular
extrinsic command issued and load that file into the
system. For example, when the extrinsic command DUPDSK
is executed the system will go looking on the diskette
in drive 1 for a file call DUPDSK.COM. If the
command's .COM file is not on the diskette the system
will return a FILE NOT FOUND error. So remember:
whenever you issue an extrinsic command to the system
its .COM file must be on the diskette for the command
to execute properly.

Whenever the user types a command to OS/A+, the command
(first three characters only) is compared to the
intrinsic command list. If the command is not in the
intrinsic list, it is assumeo to be extrinsic. A
consequence of this is that no extrinsic command
program may start with three characters which match any
of the intrinsic commands. For example, a program
named "PROCESS3.COM" could not be call by simply typing
"PROCESS3" , since OS/A+ would view that as the
intrinsic command "PROtect". Solutions:

(1) Rename the extrinsic command file.
(2) Type the commands:

LOAD PROCESS3.COM [RETURN]
RUN [RETURN]

--58--

To process an extrinsic command, OS/A+ will:

1) Prefix the command with the default device (if
a device is not specified).

2) Attach the .COM extension to the command.
3) Open the generated file spec for input.
4) Test file for program of proper LOAD file format.
5) Load and execute the program.

NOTE: (i) If any element of the procedure fails,
various error messages will result.

(ii) Step 1 of the procedure implies that a device
may be specified. This is in fact the case.

Never explicitly specify the .COM extension as part of
the command. The command COPY.COM will result in a
file spec of Dl:COPY.COM.COM, which is invalid.

Some extrinsic commands (such as COPY) are supplied by
OSS. The number of possible extrinsic commands is not,
however, limited to these few; commands may be written
by the user to perform virtually any function. If you
are intrested in writing your own extrinsic commands,
see Chapter 8.

If an extrinsic command (i.e., a program running in
RAM) has control, the program may generally be rerun or
reentered by simply using the RUN command without
parameters. Execptions to this rule are the extrinsic
commands COPY, COPY24, SDCOPY and CONFIG.

This chapter gives a description of each extrinsic
command supplied as a standard part of an OS/A+ system
master diskette (except that some commands may be
specific to particular versions or packages).

--59--

Section 5.1

command:

purpose:

users:

usage:

arguments:

options:

Description

ADOS

This command allows access to version 2
and version 4 files at the same time

Atari version 4 users only

ADOS

none

none

This program installs OS/A+ version 2 along with
version 4. This allows the user to access version 4
disks as On: while accessing version 2 disks as An:.
The usage of this command does require more memory for
the DOS, so the low memory pointer (LOMEM, $2E7) will
be moved up accordingly. In order to restore the
system to its former state (i.e., version 4 only),
press the system reset key.

After using ADOS to install the version 2 file system,
you may use COPY24 to copy version 2 files to version 4
diskettes, or vice versa.

WARNING: The DUPDSK and INIT commands must not be used
while the ADOS command is in effect! This will result
in a system crash.

WARNING: If the CONFIG command is issued while ADOS is
installed, the ADOS command must again be issued.

--60--

Section 5.2

command:

purpose:

users:

usage:

arguments:

options:

Description

BASIC

This command loads and executes the
BASIC A+ language

BASIC A+ disk owners only

BASIC [Dn:][file-name]

optionally, the name of a saved
BASIC A+ program

none

This command loads and executes the file BASIC.COM,
which is the BASIC A+ language. If the optional file
name is specified, BASIC A+ will automatically load and
execute that file.

NOTE: The file must have previously been 'SAVE'd from
BASIC A+. Refer to the BASIC A+ manual for information
specific to the language.

*** FOR MORE INFORMATION, SEE YOUR BASIC A+ MANUAL ***

--61--

Section 5.3

command:

purpose:

users:

usage:

arguments:

C65

this command loads and executes the OSS
C/65 compiler

C/65 owners only

C65 source-file destination-file [-TJ

two file specifiers

option:

Description:

-T include C/65 source Text in
assembler output

This command loads and executes the file C65.COM, the
OSS small-C compilier. Two filenames are required.
The first file given must be the name of a text file
containing C/65 source code and statements. The second
file specified will be created (or reused, if it
already exists), and the compiler will write
MAC/65-compatible assembly language to it.

Option

If the -T option is specified, the MAC/65 file will
contain the user's C/65 text lines. Each source line
precedes the assembly code it generates, if any.

*** FOR MORE INFORMATION, SEE YOUR C/65 MANUAL ***

--62--

Section 5.4

command:

purpose:

users:

usage:

arguments:

options:

Description:

CLRDSK

To initialize a diskette like the Atari
810 disk drive does.

Non-Atari disk drive users with OS/A+
Version 2

CLRDSK

none

none

This utility is only supplied with OS/A+ Version 2 for
non-Atari disk drives. It is used to force your
non-Atari disk drive to initialize a diskette just
like the Atari 810 disk drive does. Hopefully any
program that does not work with a diskette initialized
in your non-Atari disk drive will work after you
initialize the diskette using the CLRDSK utility.

NOTE: CLRDSK formats the diskette first, then writes
zeroes to all sectors execpt the directory, boot and
VTOC sectors.

--63--

Section 5.5

command:

purpose:

users:

usage:

arguments:

CONFIG

Allows the user to change the status of
a configurable drive

OS/A+ users with configurable drives

CONFIG [parmI parm2 ... J [-NJ

an optional list of paramaters which
define the desired status of drives in
the system

options:

Description

-N no drive configuration table
will be displayed

If no parameters are given, this command simply reports
the status of all drives currently attached to the
Atari computer.

If one or more parameters are given, they are presumed
to be requests to configurable disk drives to configure
themselves. A parameter consists of a single numeric
digit (in the range of 1 to 8) followed by one or two
alpha characters (the "Mode"). The digit is presumed
to be a disk drive number (corresponding to Dl: through
D8:). The legal character combinations usable as Modes
are as follows:

Mode Meaning

S Configure this drive as a Single density,
single sided drive.

D Configure this drive as a Double density,
single sided drive.

DD Configure this drive as a Double density,
Double sided drive.

Options

Normally, the CONFIG command will list out the current
drive configuration. Using the -N option will cause
this table to be omitted.

--64--

Section 5.5

Example:

(CONFIG Continued)

CONFIG 10 200
requests that 01: be configured as double
density, single sided, while 02: will
become double density, double sided.

NOTES:

If a configuration request is made, the file manager
system is reinitialized and the system status is
reported, as if the command CONFIG with no parameters
had been given.

If a configuration request is invalid (e.g., if the
drive is not capable of being configured via software),
the command will report an error.

WARNING: The CONFIG command should be issued BEFORE the
ADOS command. If CONFIG is used while ADOS is
is installed, the ADOS command MUST be repeated.

--65--

Section 5.6

command:

purpose:

usage:

arguments:

COpy

This program copies files. Note the
cautions listed below.

COpy source-file destination-file [-FQSWJ
or

COpy file [-FQSW]

one or two file specifiers

options:

Description

-F
-Q
-S
-W

force overwrite of existing file
query before each file transfer
single disk copy
wait for user response before
copying

The copy program copies one or more files without
changing the source file. In the first form, all files
matching the source-file specifier would be copied to
riles indicated by the destination specifier, which may
be on the same or a different disk. In the second
form, the files indicated by the file name would be
copied to files having the same name on the same drive.
This enables the copying of files on a single disk
system. The source and destination file specifiers
should be of one of the following forms:

1) [Dn:]file-name
2) Dn:

In form 1, the drive specifier (Dn:) is optional; the
current default drive will be assumed if no drive
specifier is given. In the second form, all files from
the indicated drive would be copied to or from another
disk.

Options

The -F option causes the program to overwrite an
existing file if it has the same name as a destination
file to be copied. If this option is not specified,
files whose destination names already exist will not be
copied.

--66--

Section 5.6 (COPY continued)

The -Q option causes the program to ask the user
whether to copy each file.

The -5 option indicates to the program that it must
perform the copy on a single drive. Copy will prompt
the user to insert source and destination disks at the
proper time.

The -W option indicates that the program must wait for
the user to insert the proper disks before initiating
the copy.

CAUTION:

Do NOT use COpy in conjuction with the ADOS command to
copy FROM version 2 diskettes TO version 4 diskettes.
Instead, use the COPY24 command utility found on your
Version 4 Master Diskette.

Examples:
COpy *.*

will copy all files on the current disk on the
current drive to another disk on the same
drive. The system will prompt the user when
the diskette needs to be swapped. Generally,
DUPDSK is a more effective and faster means of
performing this function.

COpy *.COM D3: -F
will copy all files having an extension of
".COM" from the current disk drive to drive 3
(which could be the same as the current drive;
caution) . If the fi t e (s) already exist on
drive 3, they will be erased and rewritten.

COpy D2:C*.* DI: -Q
will ask the user if he wants to copy each file
starting with the letter "CD from drive 2 to
drive 1-

COPY DI:TEST D2:NEWTEST
will copy the file TEST on drive 1 to the file
NEWTEST on drive 2.

COpy DI:TEST DI:NEWTEST -S
will perform a single disk copy of TEST to
NEWTEST.

--67--

Section 5.7

command:

purpose:

users:

usage:

arguments:

COPY24

transfer files from version 2 to
version 4 diskettes (and vice versa)

Atari owners with OS/A+ version 4 only

COPY24 source-file destination-file [-POWD

source and destination file specifiers

options:

Description:

-P
-0
-W
-D

force overwrite of existing files
query before each file copy
wait for response before copying
the version 2 disk (whether source
or destination) is a Double Density
disk

The COPY24 command allows users to transfer files
between the version 2 (or Atari DOS) and version 4 file
systems. In order to use this utility, the disk drives
must have already been places into the proper mode
using the CONPIG command (single drive users ignore
this step). Then the ADOS command must be issued to
allow OS/A+ to access version 2 diskettes. At this
point, the COPY24 command may be issued.

In order to specify the direction of file transfer, the
file specifier of the version 2 files should be of the
form An:filename, while the version 4 specifier should
be of the form Dn:filename. If the source drive is the
same as the destination drive, COPY24 will prompt for
the user to swap disks as necessary.

Options:

The "-p". "-0", and "-w" options function exactly as
they do in the COPY command (see the preceding section
on the COpy command).

The "-D" option may be used when it is desired to
specify that the Version 2 diskette was formatted and
written as a double density diskette (whether by OS/A+
version 2 or by Atari DOS 2.0 patched to enable double
density).

--68--

Section 5.7 (COPY24 contd.)

Examples:

The command
COPY24 A2:*.* 01:

would copy all files on the version 2 disk in drive two
onto a version 4 diskette in drive one.

The comand
COPY24 Al:TEST Ol:NEWTEST

would copy the file TEST from a single density version
two diskette to the file NEWTEST on a version 4
diskette. COPY24 would automatically switch the disk
drive unit from single density to double density as
needed during the copy process.

The command
COPY24 Al:TEST

would function exactly as the
that the version 2 diskette in
to be double density by the -0

--69--

Ol:NEWTEST -0
previous example, except
this case is specified
option.

Section 5.8

command:

purpose:

usage:

arguments:

options:

Description

DO

This command allows the user to perform
several operations with one command line

DO command[;command;command ...]
or

DO

optionally, a list of commands separated
by semi-colons

none

This DO command allows the user to issue several
ccrnmands on one line. These commands are not
restricted to OS/A+ intrinsic and extrinsic commands.
however. For example, the following DO command would
load the BASIC language, enter a previously 'list'ed
program, and run the program:

DO BASIC;ENTER "D:PROGRAM";RUN

In the second form of the DO command, the DO program
will prcrnpt the user for a list of commands, one at a
time, saving these away for use. The entry of just a
carriage return when prompted for a command will cause
the entire list of commands to be executed.

The DO command may also be used to run a BASIC program
upon booting the system (similar to the AUTORUN.SYS
function of Atari DOS) by placing a DO command within
the STARTUP.EXC file (see chapter 6 on batch
processing). For example, placing the following within
the STARTUP.EXC file will cause the BASIC program
"MENU" to be run upon booting the system:

DO CAR;RUN "Dl:MENU"

--70--

Section 5.9

command:

purpose:

users:

usage:

arguments:

options:

Description

DUPDBL

This program provides fast copying of
entire double density diskettes

ONLY Atari owners using version 2 OS/A+
AND ONLY those using double density disks

DUPDBL

none

none

The DUPDBL program will prompt the user for source and
destination drives, and will ask whether to format the
destination disk. The entire source disk will then be
copied to the destination disk in a manner somewhat
faster than the copy utility would provide. The two
disks, however, MUST be double density OS/A+ diskettes
formatted under version 2 of OS/A+ (or Atari DOS 2.0S
as patched for double density). IF the destination
drive is the same as the source drive, the program will
prompt the user to swap disks during the duplication
process.

--71--

Section

command:

purpose:

users:

usage:

5.10

DUPDSK

This program provides fast copying of
entire floppy disks of the same size and
type

Atari owners: all versions and diskettes
EXCEPT double density disks
under version 2 OS/A+

DUPDSK

arguments:

options:

Description

none

none

The DUPDSK program will prompt the user for source and
destination drives, and will ask whether to format the
destination disk. The entire source disk will then be
copied to the destination disk in a manner somewhat
faster than the copy utility would provide. The two
disks, however, must be of the same size and type. If
the destination drive is the same as the source drive,
the program will prompt the user to swap disks during
the duplication process.

CAUTION: Do NOT attempt to use DUPDSK to duplicate
double density diskettes under version 2 of OS/A+.
Unpredictable and disastrous results may occurl DO use
DUPDBL (see previous section) for this purpose.

--72--

Section 5.11

command:

purpose:

usage:

arguments:

options:

Description

HELP

This program provides a MENU of system
commands to help the beginning user.

HELP

none

none

are numbered from 1 to 9. To
type a digit from 1 to 9,
(Any invalid choice will exit

Although we firmly believe that the command system of
the OS/A+ Console Processor (CP) is superior to a menu
approach, we can readily understand how the wealth of
flexibility offered may overwhelm the new user.
Therefore, we have provided this HELP command which
provides menu access to the most frequently used system
commands ,

To use the menu, simply type HELP (followed by a
RETURN) any time the CP system prompt appears (usually
Dl:, followed by the cursor).

The available options
choose an option, simply
followed by a RETURN.
the menu, back to OS/A+.)

Note that each of these options (except number 9) are
exactly equivalent to an OS/A+ CP command. In the list
which follows, the menu option is followed by its OS/A+
equivalent and a short description of its effect.

2.

CAR

COPY

Runs any cartridge plugged into the
left cartridge slot. Always does a
"cold start" of the cartridge.

Allows the user to specify two filenames.
Will copy a file from the "FROM" file to
the "TO" file. use of ambiguous
(wild card) names. Use "*" and "?" in
filenames with caution.]

--73--

3.

4.

5.

6.

DIR

COPY

ERA

PRO

Allows the user to specify a filename
(including an ambiguous filename with
"*" or "?") and then lists all files
Which match the given name. If just
RETURN is given instean of a filename,
will list all files on the "current"
nisk drive. [See section 2.2 for info
on how to change the "current" disk.]

"Duplicate a File". Special access into
the COPY utility to copy a single file
using a single disk drive. Not as
fast as option 2, but for use on systems
with only one nisk drive.

Allows the user to specify a filename.
Erases the named file if it is on the
current disk and if it is not protecten.

Allows the user to specify a filename.
Sets the system status for the named
file to "Protected" if the file exists.
[Protected files cannot be ERAsed or
written to. J

7. REN Allows the user to
and a TO filename.
file (if it exists
to the TO filename
already exist) .

specify a FROM name
RENames the FROM
and is not protected)
(if it does not

8.

9.

UNP Allows the user to specify a filename.
Resets the system "protected" status
for the named file if it exists.

Exit to OS/A+. An unnecessary option,
actually, since a simple RETURN will
exi t also.

--74--

Section 5.12

command:

purpose:

usage:

arguments:

options:

Description

INIT

This program initializes floppy disks
so that they may be read from
or written to

INIT

none

none

The INIT utility allows the user to format a floppy
disk so that it may be read or written by programs.
Under version 2, the user will be prompted for
information on exactly how to initialize the disk
(i.e., with or without a system file, etc.). Under
version 4, a system file, DOS.SYS, is not written by
the init program. In either case, the program will
prompt for a drive to init. When the initialization
process is complete, the floppy disk may now be used to
store data. Under OS/A+ version 4, use COpy or DUPDSK
to transfer a DOS.SYS file to the new disk, if desired.

--75--

Section

command:

purpose:

users:

usage

5.13

INITDBL

This utility is used to initialize a
double density diskette so that they can
be read from and written to in double
density.

OS/A+ version 2 users with a single
non-Atari disk drive.

INITDBL

arguments:

options:

Description:

none

none

NOTE: The INITDBL utility is unnecessary for users with
more than one disk drive. Instead, just use the
standard INIT utility (see section 5.12).

The utility INITDBL is to be used on a one drive system
to initialize a double density diskette and write
DOS. SYS to it.

To use this utility, boot the master diskette. Type
the INITDBL command, and answer the prompt with the
number 1. Before you type [RETURN], replace the master
diskette with your new unformatted double density
diskette. When the INITDBL utility is finished the
disk drive with still be configured single density. To
get a directory of your new double density diskette,
CONFIGure the disk drive to double density and type the
DIR command.

--76--

Section

command:

purpose:

users:

usage:

5.14

MAC65

Loads and executes the MAC/65 macro
assembler

MAC/65 disk owners only

MAC65 [filel [file2 [file3 J] [-A][-D]]

arguments: an optional set of one to three filename,
construed to be the source, listing, and
object files (respectively) of a MAC/65
assembly.

options:

Description:

-A
-D

source file is Ascii
assembly must be Disk-to-Disk

This command loads and executes the file MAC65.COM, the
ass Macro Assembler/Editor. If no filenames are given,
MAC/65 will be invoked in its interactive (Editor)
mode. Programs or text may then be edited and/or
assembled. See the MAc/65 manual for further details.

If one or more files are specified, MAC/65 will be
invoked in its "batch" mode. That is, it will perform
a single assembly and then return to OS/A+. Generally,
this command line will perform the assembly in a manner
equivalent to giving the "ASM" command from the MAC/65
Editor. That is, if only one filename is given, it is
assumed to be the source file, implying that the
listing will go to the screen and the object code will
be placed in memory (but only if requested by the .OPT
OBJ directive). If a second filename is given, it is
assumed to be the name of the listing file. Only if
all three filenames are given will the object code be
directed to the file specified.

NOTE: if an assembly needs no listing but does need an
object file, the user may specify E: as the listing
file, thus sending the listing to the screen.

--77--

Section 5.14 (MAC65 continued)

Options

The -A option is used to specify that the source file
is not a standard MAC/65 SAVEd file but is instead an
Ascii (or Atascii) file. This is equivalent to using
the interactive Editor mode of MAC/65 to use the
sequence of commands "ENTER#D ... " and" ASM , ... ".

The -D option is used to specify that the assembly MUST
proceed from disk to disk. If this option is not
given, the source file is LOADed (or ENTERed) before
the assembly, and then the assembly proceeds with the
source in memory (generally producing improved speed of
assembly). If, however, the source file is too large
to be assembled in memory, the user may use this option
to allow assembly of even very large programs. (And
remember, even if the source fits, the macro and symbol
tables must reside in memory during assembly also.)

NOTE: the -D option can NOT be used in conjunction with
the -A option. The source file assembled under the -D
option MUST be a properly SAVEd (tokenized) file.

*** FOR MORE INFORMATION, SEE YOUR MAC/65 MANUAL ***

--78--

Section 5.15

command:

purpose:

users:

usage:

arguments:

options:

Description:

RS232

installs the serial device handlers
("Rn: ") for use with the Atari 850
Interface Module.

Atari users with 850 Modules

RS232

none

none

Using the command RS232 from OS/A+ is functionally
equivalent to using Atari's AUTORUN.SYS file (which
boots the R: handlers at power on time under Atari
DOS). The driver for the various RS232 functions is
loaded at LOMEM, LOMEM is moved, and the R: device is
hooked into the handler table.

After giving the RS232 command, if the Dn: prompt
reappears BELOW the line containing the "RS232"
command, the Interface Module has loaded its software
properly. If, however, the screen clears and the Dn:
prompt appears at the TOP of the screen, something went
wrong during the loading process. Unfortunately, the
software in the Interface Module does not return a
usable error code, preferring instead to do a system
warmstart (hence the cleared screen).

CAUTION: due to a bug in the software in the 850
Interface Module, hitting RESET will destroy the proper
LOMEM pointer, effectively ignoring the space occupied
by the RS232 handlers.

CAUTION: the 850 Interface Module is sometimes too
intelligent for its own good. In particular, one
cannot generally reload the software from the module
without turning the module off and back on again.

--79--

Section

command:

purpose:

users:

usage:

5.16

SDCOPY

This program is used to copy single
density files to double density files.

Atari owners using OS/A+ version 2 only.

SDCOPY source-file destination-file [-FQR

arguments: one or two file specifers

options:

Description:

-F
-Q
-R
-v

force overwrite of existing file
query before each file transfer
reverse orientation of copy
verbose

The utility SDCOPY is for OS/A+ Version 2 owners with
non-Atari disk drives only. The purpose of this
utility is to copy a single density source file to a
double density destination file. This utility works
the same way as the COpy utility execpt for the -R
option.

The -R option is used to reverse the orientation of the
copy. That is instead of copying from a single density
source file to a double density destination, the
orientation is reversed and the copy goes from a double
density source file to a single density destination
file.

NOTE: the SDCOPY utility can only be used with one disk
drive. If you want to copy from single density to
double density between two different drives, just use
the CONFIG command to set the drives up properly and
use the normal COPY utility.

--8f1J--

Chapter 6 Batch Processing

6.1 An Overview of Batch processing

You may often find yourself repeating the same group of
commands over and over. OS/A+ allows you to put these
commands into a file with special capabilities.This
file may be used by typing a single command which will
cause all the commands in that file to be executed.
This can save quite a bit of your time and energy since
you won't constantly be typing the same string of
commands.

Let's suppose that you wrote a set
that had to be run in sequence.
two ways:

of BASIC programs
You could do this in

1. Issue the CP extrinsic BASIC command (thus
executing BASIC.COM), then from BASIC run
each program one at a time. If the running
time of the BASIC programs was very long you
might sit at the key board for hours just to
type RUN every once in awhile.

OR

2. Create a BATCH file containing the OS/A+
commands required to run the BASIC programs.
You would then enter one command that would
free you from the keyboard for more important
(or fun) things.

The second method is obviously preferable as it is
quicker and can be repeated easily.

Any text file with the filename extension .EXC can be
used as an OS/A+ batch execute file. The execution of
the file is invoked much like the extrinsic commands,
except the command is preceeded with a commercial "at"
symbol ("@"). To execute the EXECUTE file DEMO.EXC on
the Dl: default device, type:

Dl :@DEMO

CP will open the file spec Dl:DEMO.EXC for input and
then set up OS/A+ to read it line by line executing the
CP commands just as if they were being entered from the
keyboard.

--81--

6.2 .EXC File Format

An execute file is simply a text file. Each line of
this text file will become a CP command when executed.

The three basic rules of the text file lines are:
1) they must contain valid OS/A+ Console Processor

commands
2) they must be shorter than 128 characters in

length
3) they must end in a carriage return

(ATASCII $9B).

OS/A+ allows the commands in
preceeded by numbers and blanks.
the command lines to be numbered
document their purposes.

an execute file to be
This feature allows
for readability and to

The command file lines: LOAD OBJ.TEST <return>
and

100 LOAD OBJ.TEST <return>

are the same to OS/A+ OS/A+ scans the line for the
first non- numeric, non-blank character before starting
to scan the command word. Virtually any text editor,
including the editor of MAC/65, can be used to create
and modify execute files.

NOTE: One may also create an execute file (or, for that
matter, any text file) by using "TYP E: <diskfile>".
(TYPE will clear the screen, at which time you simply
type in your text, line by line. You terminate the
copy by pressing CTRL-3 on the Atari, the end of file
signal for the E: device.)

6.3 Intrinsic Commands for .EXC Files

OS/A+ has four special intrinsic commands designed for
use exclusively with execute files. These commands
are:

REMARK
SCREEN

NOSCREEN

END

Remark or comment (does nothing)
Turn on Echo of execute file
command lines to the screen.
(Default mode)
Turn off Echo of execute file
command lines
Stop executing the execute file
and return OS/A+ to keyboard
entry mode (the cpl.

--82--

See the section on intrinsic commands for a more
detailed explanation of these commands.

6.4 Stopping Batch Files

an execute file is being processed, various
conditions occur which will warrant a halt in the
batch execution. These conditions may occur because of
system-detected errors or because of a user program
detecting a condition it considers hazardous to the
system's health.

6.4.1 Stops by OS/A+

Humans are not quite perfect in the eyes of computers
and sometimes make mistakes. OS/A+ commands specified
in error will generate error messages. If OS/A+
discovers an error while executing an EXECUTE file, it
will print the error message as usual and STOP
executing the EXECUTE file. Note that this error stop
only occurs if the error is found by OS/A+, not just
because a program generates an error.

Execution of an execute file will also stop after the
CARTRIDGE commmand is executed.

6.4.2 Stops by User Programs

It is sometimes desirable for a program in a chain of
executing programs to stop the execute process. The
usual reason for this is that the program has detected
an error severe enough to invalidate the processes
performed by the following program(s). The continued
execution of the execute files is provided for by a
single byte flag within OS/A+. If a program sets this
byte to zero, then upon returning to OS/A+ (DOS or CP
BASIC statements) the execute file execution will
immediately stop. The execute flag is located 12 bytes
from the start of OS/A+, which is pointed to by memory
location 10 ($0A). The following Basic program segment
will turn off the execute file and return to OS/A+.

1000
1010
1020
1030

CPADR = PEEK(11)*256 + PEEK (10)
EXCFLG = CPADR + 12
POKE EXCFLG,0
DOS

--83--

6.5 STARTUP.EXC: A Special File

The execute filename STARTUP.EXC has special meanings
in the OS/A+ system. When the system is first booted
(power up), OS/A+ will search the directory of the
booted disk volume for a file named STARTUP. EXC. If
STARTUP.EXC is on the booted volume, OS/A+ will execute
that file before requesting keyboard commands.

--84--

CHAPTER 7

GETTING STARTED WITH OS/A+ and Atari BASIC

Now we are really ready to start explaining some of the
OS/A+ capabilities. But first, let's get the hardware
set up right and things put in their proper places.
Right off, put the master diskette in a safe place,
take the copied master diskette and put that in drive
1, put your BASIC cartridge in the left cartridge slot,
and turn the power ON again.

Since you sucessfully made a copy of the master disk,
we'll assume that the system booted properly (if it
didn't, try everything again with a new blank diskette
before calling us).

Now, though, when the system finally presents you with
the HELP menu, you can use selection 1, "enter
CARtridge". If you do so, you should see BASIC's
familiar READY prompt, and all is well. (Incidentally,
you could also have used selection 9 to go to the CP
command level and then issued the CAR command. More on
this soon.)

Suppose, though, that you wanted to return to the CP
command level. Why do that? Well from the CP you can
list all files on a diskette via DIRectory, REName
files, PROtect files and so on, without losing any
BASIC program that you might have already typed in.

In fact any of the intrinsic commands (found in chapter
4 of the OS/A+ manual) may be used from the CP without
harming even a line of what you may have typed in while
in BASIC. To get back to your program just type CAR.
You will be back in BASIC, and any program you in is
still there.

So, from the Dl: prompt in OS/A+, CAR will put you in
BASIC (make sure the cartridge is there first). Nice
and neat. But how do we get from BASIC to the CP?
Simple: From the READY prompt in BASIC, the DOS command
will put you back in the as, where you can do any
intrinsic commands without losing any of the BASIC
statements you might have already typed in.

The following sections describe the most common BASIC
commands and statements which affect files on the disk.
Please note that these commands should be issued while
using the BASIC cartridge, or ass BASIC. That is
these commands should be typed immediately after the
READY prompt.

--85--

Section 7.1

command:

purpose:

users:

usage

argument:

description:

CLOSE

This command disassociates the
number (channel) and file which
associated by a previous
statement.

Atari BASIC users with OS/A+

CLOSE #fn

fn - file number 1-7

file
were
OPEN

After CLOSEing a file number, the user may no longer
perform I/O (e.g, via PRINT, INPUT, etc.) on the file
Which had been associated with that channel.

NOTE: a file OPENed for any form of output (modes B,9,
or 12) should ALWAYS be closed before the diskette
containing it is removed or changed. The most common
cause of crashed Atari Diskettes is failure to observe
this rule.

NOTE: Atari BASIC does NOT consider it an error to
CLOSE a channel that is not OPEN, so it is often good
practice to end a program segment by a line such as the
following:

999 FOR I=l TO 7 : CLOSE #I : NEXT I

NOTE: both the END and RUN statements close all files
(except file #0, the keyboard/screen), and can be used
to advantage for this purpose when desired.

--B6--

Section 7.2

command: ENTER

purpose: This command is
BASIC program
the disk.

used to retrieve a
that has been LISTed to

users:

usage:

argument:

description:

Atari BASIC users with OS/A+

ENTER filespec

filespec - the name of the file you are
going to ENTER.

The ENTER command is used to retrieve a BASIC program
that has been LISTed to the disk. As the program is
being ENTERed into BASIC's user area, each line will be
checked for proper syntax and converted into the
internal (tokenized) form used by BASIC.

If a syntax error is encountered, the offending line
will be listed with the suspected error location in
inverse video.

NOTE: The line with the error will, nevertheless, be
placed in program memory. In such a case, your program
must be corrected before you can RUN it.

CAUTION: ENTER does NOT clear the user memory space.
Therefore, if you wish to ENTER a new program, use NEW
first. (Actually, this can be a handy feature when you
wish to merge two programs together.)

EXAMPLE
10 PRINT "THIS IS PROGRAM 1"
LIST "D:PROGl"
10 PRINT "THIS IS PROGRAM 2"
LIST "D:PROG2"
NEW
ENTER "D:PROGl"
LIST
[and the computer will LIST the following:

10 PRINT "THIS IS PROGRAM 1"]
NTh'
ENTER "D:PROG2"
RUN
[and the computer will respond with:

THIS IS PROGRAM 2]

--87--

Section 7.3

command:

purpose:

users:

usage:

arguments:

description:

GET

This statement will retrieve a single
byte of data from a specified disk
file.

Atari BASIC users with OSjA+

GET #fn,avar

fn - file number 1-7
avar - any numeric variable

The GET statement is used to retrieve a single byte of
data from a disk file that has been previously OPENed
using the same file number.

NOTE: The data that you are GETting from the disk file
should have been previously written to the specified
file using the PUT statement.

EXAMPLE:
10
20
30
40
50
60
70
80

OPEN #1,8,11l,"D:TEST" : REM CREATE A TEST FILE
FOR I = 0 TO 255 : PUT #1,1 :NEXT I
CLOSE #1 :REM WE CREATED IT
OPEN #1,4,0,"D:TEST" : REM NOW CHECK IT OUT
FOR I = 0 TO 255 : GET #l,X : REM CHECK EACH
IF X <> I THEN PRINT "BAD DISK DATA",I,X

NEXT I
END : REM END CLOSES ALL FILES

--88--

Section 7.4

command:

purpose:

INPUT

This command is used
from the specified
keyboard) .

to request data
file number (or

users:

usage:

arguments:

description:

Atari BASIC users with OS/A+

INPUT f#fn,} var f,var ..• }

fn - file number 1-7
var - either numeric or string

When the INPUT statement is used without the fn option,
data will be requested from the keyboard. You will
notice a "?" appearing on the screen prompting you for
the keyboard input. See your Atari BASIC Reference
Manual for more details.

When the file number (#fn) argument is used, data will
come in the form of ATASCII lines from the file that
has been previously successfully OPENed using the same
file number. Otherwise, the action of INPUT is
virtually identical to the action when INPUTing data
from the keyboard. That is, a string input is
terminated by an ATASCII RETURN character and a numeric
input by either the RETURN or a comma within a line.

NOTE: The INPUT statement cannot (generally) read a
line that is longer the 127 characters in length. If
you PRINT a line to the disk that you will later want
to INPUT, it is best to limit the size of the PRINTed
line to 127 characters or less.

--89--

EXAMPLE
10 DIM LlNE$(15)
20 OPEN #1,8,0, "Dl:INPUT.SMP" : REM CREATE A FIL
30 FOR I = 1 TO 20
40 PRINT #1: "THIS IS LINE #":I : REM WRITE THE D
50 NEXT I
60 CLOSE #1 : REM CLOSE THE FILE YOU JUST CREATE
70 OPEN #1,4,0, "Dl:INPUT.SMP" : OPEN FOR READ ON
80 FOR I = 1 TO 20
90 INPUT #1,LINE$: REM GET THE FIRST LINE
100 IF LlNE$(15) <> STR$(I) THEN GOTO 500
110 PRINT LINE$
120 NEXT I
130 CLOSE #1 : REM CLOSE THE FILE
140 PRINT "SUCESSFUL USE OF THE INPUT STMT"
150 STOP
500 REM WE GET HERE FROM LINE 100
510 PRINT "UNSUCCESSFUL USE OF INPUT"
520 END : REM ANOTHER WAY TO CLOSE THE FILE

--90--

Section 7.5

command:

purpose:

users:

usage:

arguments:

description

LIST

This command will LIST the program
currently in memory to the screen (or
to the file specified).

Atari BASIC users

LIST [filespec]
LIST [filespec,] linenol [,lineno2]

filespec - the name of the file you are
going to LIST to the disk.

linenol - beginning line number
lineno2 - ending line number

The LIST command is probably one of the most commonly
used commands in BASIC. Most people know that the LIST
command, when given all by itself, will LIST their
program to the screen. Even when beginning and ending
line numbers are given the results are predictable.

Now with OS/A+ the LIST command can do even more. When
used with a filespec, the LIST command will LIST your
program to the disk instead of the screen. The
contents of this file will contain text characters and
can take up a large amount of disk space if you have a
large program.

If you use the option where two line numbers are given,
then only the lines from linenol to lineno2 (inclusive)
will be LISTed to the filespec.

If you use the option where only one
given, then ONLY that line will
filespec.

line number is
be LISTed to the

NOTE: The ability to LIST a range of lines to the disk
provides a convenient method of moving a subroutine
(for example) to another program.

See also Section 7.2 on the ENTER command.

--91--

Section 7.6

command:

purpose:

users:

usage:

arguments:

description:

LOAD

This command will get a program that
has been SAVEd to the disk and put it
in BASIC's memory.

Atari BASIC users with OS/A+ or DOS 2.0s

LOAD filespec

filespec - The name of the file you
wish to LOAD.

LOAD is
canmand.
SAVEd to
be done as
program is

used in conjunction with the BASIC SAVE
Only programs which have been previously
disk may be LOADed. No syntax checking will
your program is being LOADed. because the
already in internal format.

Generally. if you wish to keep a program on the disk.
you SAVE it. Then. later. when you wish to look at it.
modify it. or RUN it. you can LOAD it. BASIC does not
remember the name that you use when you LOAD a program.
so you can SAVE it again either under the same name (in
which case the original version is lost) or under
another name.

Also. see the RUN command for an alternative method of
LOADing a program which will simply be RUN and not
modified.

EXAMPLE:
10 PRINT "THIS IS PROGRAM 1"
SAVE "D:PROGl"
10 PRINT "THIS IS PROGRAM 2"
SAVE "D:PROG2"
LOAD "D: PROGl"
LIST
[and the computer will list the following:

10 PRINT "THIS IS PROGRAM 1"]
RUN "D:PROG2"
[and the computer will respond with:

THIS IS PROGRAM 2]

--92--

Section 7.7

command:

purpose:

users:

usage:

arguments:

description:

OPEN

This command prepares a file for access
and assigns it a file number.

Atari Basic users with OS/A+

OPEN #fn,aexpl,aexp2,filespec

fn - file number 1-7
aexpl - I/O mode

4 - input
6 - directory access
8 - output
9 - append
12 - input/output

aexp2 - device dependent value
(usually 0)

filespec - a proper OS/A+ filename

The OPEN statement allows a disk
for that matter} to be linked
(channel) for future reference in
input/output instructions (e.g.,
CLOSE) .

COMMENTS on arguments:

file (or any device,
to a file number
connection with file
PUT,GET,INPUT,PRINT,

The fn argument allows for a number between 1 and 7.
The number 0 is reserved for the screen and can not be
used in Atari BASIC (though it is allowed in BASIC A+).
After a file has been OPENed with a given fn, all
references to that file must be made using that same
fn.

The aexpl argument allows the user to OPEN a file for a
specific "mode", according to the following table:

Mode 4: will OPEN the specified file for input
only. Thus you can only retrieve data
from the specified file.

--93--

Mode 6: allows you to access the directory on
the disk.

Mode 8: is the opposite of mode 4. That is,
data can only be stored to the specified
file. See below for notes when using
mode 8.

Mode 9: is used to add data to the specified
file. The data that is added will begin
at the current end of the specified
file.

Mode 12:is used to
input AND
stored and
file.

access the specified file for
output. Thus data can be
retrieved from the specified

NOTE: After OPENing a file, the specified file number
is used to designate the file in other I/O statements.
Two OPENed files cannot have the same file number, but
it is possible to OPEN the same file with two different
file numbers. Generally, such a double OPEN will have
disastrous results. BEWARE:

NOTE: If
specified
specified
specified
new file
you.

a file is OPENed for output (aexpl=8) and the
file does not exist then a file with the
name will be created for you. If the file
already exists, it will be destroyed and a
with the specified name will be created for

NOTE: A file OPENed
appended to under
DOS. Excepting for
opened in mode 9
increased.

for update (aexpl=12) can NOT be
version 2 of OS/A+ or under Atari
version 4 OS/A+ files, only files
will allow a file's size to be

NOTE: Modes 13 and 5 are also possible under version 4
OS/A+. Their usage, however, is best left to advanced
users; refer to section 8.2.2 for more details of
extended meanings of aexpl and aexp2 under version 4.

NOTE: Mode 6 might, for example, be used from BASIC to
find what files are on a disk and thereby allow a menu
selection. The following program will allow a menu
selection of all BASIC SAVEd programs on drive 1,
providing that the program names do NOT have an
extension (i.e., the programs should not have been
SAVEd as "D:name.ext OO but simply as "D:name OO

) .

--94--

EXAMPLE:

100 OPEN #1,6,0,"0:*" : OIM LN$(40)
110 FOR I = 1 TO 20 : INPUT #1, LN$
120 IF LN$(2,2)=" " THEN PRINT I,LN$(3,10)
130 CLOSE #1 : OPEN #1,6,0, "0:*"
140 PRINT : PRINT "WHAT PROGRAM TO RUN ";
150 INPUT J : IF J>=I THEN GOTO 140
160 FOR I = 1 TO J : INPUT #I,LN$: NEXT I
170 CLOSE #1 : LN$ (1, 2) "0: "
180 RUN LN$(I,10)

NEXT I

Try typing this in and then saying SAVE "D:MENU".
Later, you can use the program by typing RUN "O:MENU".

--95--

Section 7.8

command:

purpose:

users:

usage:

arguments:

description:

PRINT

This command puts the ASCII equivalents
of the given expressions to the file
specified or the screen.

Atari BASIC users with OS/A+

PRINT [#fn (;}] exp [(,}exp ...] {,}

fn - file number 1-7
exp - the expression can either be a

string enclosed in double quotes,
a string variable, or a numeric
variable.

When a file number is used with the PRINT command, the
specified variables are PRINTed to the disk file that
has been previouly OPENed using the same file number.

NOTE: Characters are PRINTed to a disk file in a manner
identical to the way characters are PRINTed to the
screen if the file number option is not used.

NOTE: A "," after the #fn causes tabbing before the
first character is PRINTed. A ":" does not cause the
tabbing. Normanlly, the semicolon should be used.

See also INPUT.

--96--

Section 7.9

command:

purpose:

users:

usage:

arguments:

description:

PUT

this statement is used to store a
single byte of data to a specified file

Atari BASIC users with OS/A+

PUT #fn,avar

fn - file number 1-7
avar - an arithmetic varaible

The PUT statement is used to output a single byte of
data to a specified file. The file number used in the
PUT statement must be one that has been previously used
in the successful OPEN of a file.

NOTE: Data that has been stored in a file using the PUT
statement can usually only be retrieved using the GET
statement.

See also GET.

--97--

Section 7.10

command:

purpose:

users

usage:

arguments:

description

SAVE

This command will store a BASIC program
on disk in internal format (not
ATASCII) .

Atari with OS/A+

SAVE filespec

filespec - filename you wish to SAVE
you program under.

The SAVE command is used to SAVE your BASIC program in
its internal format. This format is usually smaller
then the text form of your program and will take up
less room on your disk. All programs SAVEd to the disk
must be reentered using the LOAD or RUN commands.

See descriptions of LOAD and RUN for more examples and
further explanations.

--98--

Section 7.11

command:

purpose:

users:

XIO

This is BASIC's catch-all Input/Output
command. If BASIC doesn't provide a
function to access a particular feature
of a device or file, some form of XIO
can probably be used to do so.

Atari BASIC users with OS/A+.

usage: XIO subcommand,
filespec

!lfn, auxl, aux2,

arguments: subcommand see descriptions below.

descriptions:

fn -- a file number. In contrast to
most OS/A+ I/O commands, XIO often
requires that the file number be
that of an UN-OPENed channel. The
subcommand dictates the usage
here, so see descriptions below.

auxl and aux2 -- generally zero. These
values are passed to OS/A+
unchanged (and thence to the
device being accessed), so the
individual device(s) may require
other values. None of the
examples given in this section use
these values.

filespec -- a proper OS/A+ file name.

Although, as noted, XIO can be used for several
purposes, we will restrict our discussion here to those
four subcommands most useful to the Atari BASIC
programmer. For more detail, we suggest chapter 5 of
the OS/A+ reference manual and other sources, such as
the Atari 850 Interface Module manual.

The subcommands to be discussed will each be treated as
a separate BASIC command.

--99--

subcommand:

purpose:

usage:

arguments:

description:

RENAME

May be used to rename disk files.

XIO 32, ffn, 0, 0, filespec

fn -- the file number of an UN-OPENed
channel.

filespec -- a proper OS/A+ file name
followed by, in the same BASIC
string, a comma and a second file
name. The second file name may
NOT include a disk drive
specifier.

It is suggested that "fn", the file number, be 7, since
that channel is normally reserved for system I/O
functions (which this certainly is). The only thing
strange about this subcommand is the form of the
filespec. Some examples follow:

XIO 32,t7,0,0,"D:TEST.SAV,OLDTEST.SAV"
DIM FL$ (100)
INPUT FL$
FL$(LEN(FL$)+l) ",BACKUP"
XIO 32,t7,0,0,FL$

Again, note that the second file name in both examples
is NOT preceded by a disk drive specifier.

-100-

subcommand:

purpose:

usage:

arguments:

description:

ERASE (also called "KILL" and "DELETE")

May be used to permanently erase disk
files.

XIO 33, tfn, filespec

fn the file number of an UN-OPENed
channel.

filespec -- a proper OS/A+ file name,
with "wild cards" accepted and
processed.

IF the file specified exists on the disk drive
specified, and IF the file is not PROTECTED (see next
subcommand), the specified file will be permanently
erased (deleted, killed, zapped) from the disk.

USE THIS SUBCOMMAND WITH CAUTION: specifying a "wild
card" (a file name including an asterisk or question
mark) will erase ALL files which match the given name.

Examples:
XIO

will erase the single
name OLDPROG.SAV from
drive 2.

file with the
the diskette in

XIO
will erase all files having a
extension of ".BAK" from the
in drive 1.

filename
diskette

subcommand:

purpose:

usage:

arguments:

description:

PROTECT (also called "LOCK")

May be used to protect disk files from
accidental erasure and modification.

XIO 35, #fn, 0, 0, filespec

fn the file number of an UN-OPENed
channel.

filespec -- a proper OS/A+ file name,
with "wild cards" accepted and
processed.

All files on the specified drive which have names which
match the specified file will be by usage
of this subcommand. Protection ln the OS/A+
environment simply consists of setting a flag in the
diskette's file directory which tells the OS to
disallow either modification (i.e., OPENs in modes B,
9, 12, etc.) or erasure of the file. Any OS/A+
DIRectory listing will show protected files by means of
an asterisk in the first column of the displayed lines
(unprotected files have simply a space in that
position) .

Examples:
XIO 35, #7, 0, 0, "D:*.*"

will protect ALL files on drive 1.
XIO 35, #1, 0, 0, "D4:DOS.SYS"

will protect only the file named
"DOS. SYS" on the diskette in drive 4.

-102-

subcommand:

purpose:

usage:

arguments:

description:

UNPROTECT (also called "UNLOCK")

May be used to unprotect disk files to
allow subsequent erasure and
IlDdification.

XIO 36, #fn, 0, 0, filespec

fn the file number of an UN-OPENed
channel.

filespec -- a proper OS/A+ file name,
with "wild cards" accepted and
processed.

All files on the specified drive which have names which
match the specified file will be "UNPROTECTED" by usage
of this subcommand. Protection in the OS/A+
environment simply consists of setting a flag in the
diskette's file directory which tells the OS to
disallow either modification (i.e., OPENs in modes 8,
9, 12, etc.) or erasure of the file. Any OS/A+
DIRectory listing will show UNprotected files by means
of a space in the first column of the displayed lines
(protected files have an asterisk in that position).

Examples:
XIO 35, #7, 0, 0, "D2:*.COM"

will unprotect all files on drive 1
Which have a filename extension of
".COM" .

XIO 35, #1, 0, 0, "Dl:OOS.SYS"
will unprotect only the file named
"DOS.SYS" on the diskette in drive 1
(this step is necessary before erasing
that file, as you might do to gain more
space on the diskette).

-103-

Chapter 8: Assembly Language and OS/A+

As mentioned in Section 2.1, OS/A+ is designed as a
layered operating system. Application programs
(including languages such as BASIC A+) are expected to
call the operating system "properly", through the
system call vector (labeled "CIa" in SYSEQU.ASM). In
turn, the CIa will determine which device is to receive
what I/O request and handles most of the work
transparent to the calling program.

If a program restricts itself to proper calls to CIa
using labels provided in SYSEQU.ASM, the program should
transfer virtually without change from one version of
OS/A+ to another. (Probably the only other areas of
change would involve memory map usage and the length of
file names--12 bytes under version 2 and 30 bytes under
version 4.)

In any case, here with is a description of the proper
assembly language calling sequnces and parameters under
OS/A+.

--104--

8.1 Interfacing to I/O Routines

8.1.1 The Structure of the IOCB's

When a program calls the OS through location "CIO", OS
expects to be given the address of a properly formatted
IOCB (Input Output Control Block). For simplicity, we
have predefined 8 IOCB's, each 16 bytes long, and the
calling program specifies which one to use by passing
the IOCB number times 16 in the 6502's X-register.
Thus, to access IOCB number four, the X-register should
contain $40 on entry to OS. Notice that the IOCB
number corresponds directly to the file number in BASIC
(as in PRINT #6, etc.). The IOCB's are located from
$0340 to $03BF on the Atari (but you really should use
the equates from the disk file "SYSEQU.ASM" rather than
relying on hard-coded addresses.)

When the OS gets control, it uses the X-register to
inspect the appropriate IOCB and determine just what it
was that the user wanted done. Figure 8-1 gives the
OS/A+ standard name for each field in the IOCB along
with a short description of the purpose of the field.
Study the figure before proceeding.

The user program should NEVER touch fields ICHID,ICDNO,
ICSTA and ICPUT, as they are set by the OS. In
addition, unless the particular device and I/O request
requires it, the program should not change ICAUXI
through ICAUX6. The most important field is the
one-byte command code, ICCOM, which tells the operating
system what function is desired.

--105--

FIGURE 8-1

IOCB STRUCTURE

FIELD
NAME

ICHID

ICDNO

ICCOM

ICSTA

ICBADR

ICPUT

ICBLEN

OFFSET
WITHIN
IOCB
(bytes)

1

2

3

4

6

8

SIZE
OF
FIELD
(bytes)

1

1

1

1

2

2

2

PURPOSE OF FIELD

SET BY OS. Index into device
name table for currently OPEN
file, set to $FF if no file
open on this IOCB.

SET BY OS. Device number
(e.g., 1 for "Dl:xxx" or 2 for
"D2:yyy")

The COMMAND request from user
program. Defines how rest of
IOCB is formatted.

SET BY OS. Last status returned
by device. Not necessarily the
status returned via STATUS
command request.

BUFFER ADDRESS. A two byte
address in normal 6502 low/high
order. Specifies address of
buffer for data transfer or
address of filename for OPEN,
STATUS, etc.

SET BY OS. Address minus one of
device's put-one-byte routine.
Possibly useful when high speed
single byte transfers are
needed.

BUFFER LENGTH. Specifies
maximum number of bytes to
transfer for PUT/GET opera-
tions. NOTE: this length is
decremented by one for each
byte transfered.

--106--

lCAUXl

lCAUX2

lCAUX3
lCAUX4

lCAUX5

ICAUX6

10

11

12

14

15

1

1

2

1

1

Auxiliary byte number one. Used
in OPEN to specify kind of file
access needed. Some drivers can
make additional use of this
byte.

Auxilliary byte number two.
Some serial port functions may
use this byte. This and all
following AUX bytes are for
special use by each device
driver.

For disk files only: where the
disk sector number is passed by
NOTE and POINT. (These bytes
could be used separately by
other drivers.

For disk files only: the byte-
within-sector number passed by
NOTE and POINT.

A spare auxilliary byte.

FIGURE 8-1

IOCB STRUCTURE

--107--

1--I
I IOCB field name 1 1 I 2 I 3 1 4 I 5 I 6 I 7 1
, 1 I I I I I 1 , 1
I I I' I I I I I I BUFFER I PUT-A- I
I I C I C 1 C I C I ADDRESS I .BYTE I
1 1 HID' cis I I I ADDRESS ,
'Type of I liN 1 0 I T I I 1 , 1
'command 1 D I 0 1 M I A I ICBADR 1 ICPUT ,
1--I
10PeN I * 1 * 1 3 I * 1 filenamel * 11--I
ICLOSE 1 * I I 12 I * I I ,1--I
Idynamic 1 I 1 'I 1 1
ISTATus 1 1 * 1 13 1 *' filename I I1--I
1Get TeXT I 1 I 1 I I 1
IRecord 'I 1 5 1 * 1 buffer I 11--I
IPut TeXT 1 1 I I 1 , 1
IRecord 1 I '9' * 1 buffer I 11--I
1Get BINary 1 1 1 I I 1 1
IRecord I I 1 7 I * 1 buffer 1 I
1--I
IPut BINary 1 1 , I 1 1 1
IRecord I 1 I 11 I *' buffer' 1
1--I
1 EXTENDED COMMANDS: DISK FILE MANGER ONLY I
1--I
IREName 1 I * 1 32 1 * 1 filename 1 11--I
IERAse 1 I * 1 33 1 * I filename I 11--I
IPROtect I 1 * I 35 1 * I filename' 11--I
IUNProtect I 1 * 1 36 1 *' filename 1 1
1--I
INOTE I I I 38 1 * I 1 ,1--I
IpOINT 1 1 I 37 1 * 1 1 I
1--I

'* 'LEGEND: Set by OS when this
command is used

'buffer' Address of a data buffer
'filename' Address of a filename

Figure 8-2 loeB Field Usage

1--I
1 8 I 9 I 10 1 11 1 12 I 13 I 14 I 15 I IOCB field name I
1 I 1111111111111 1
I BUFFER , C 1 C 1 C 1 C 1 C 1 C I 1
I LENGTH I A 1 A I A! A! A 1 A I (as given in I
I 1 1 U I U I U lui U lui SYSEQU. ASM) 1
Illxlxlxlxlxlxl 1
I ICBLEN ! 1 1 2! 3! 4 I 5 I 6 I COMMAND NAMES I
1--I
1 Imodel 1 1 I 1 1 COPN I
1--I
I I 1 1 1 I 1 1 CCLOSE I
1--I
1 'I! I 1 I 1 1
1 I 1 1 , 1 I 1 CSTAT 1
1--I
I 1 1 I 1 I I 1 I
I length 1 I 1 1 1 I 1 CGTXTR !
1--I
1 I 1 I , 1 1 I I
1 length I I I I I I 1 CPTXTR 1

1--I
1 I 1 , 1 1 'I I
I length I 1 I 1 1 1 1 CGBINR I
1--I
1 1 I I I 1 I I I
I length I I 1 I I I 1 CPBINR !
1--I
1 (See section 8.1. 2) I

1--I
1 I I I 1 , , I CREN I
1--I
I 1 1 1 , I , 'CERA !
1--I
1 I I 1 I I 1 I CPRO 1

1--I1 I I I I I I 1 CUNP I
1--I
1 I 1 1 sec num Ibytel I CNOTE 11--I
, 1 I I sec num Ibytel 1 CPOINT 1
1--I

'length'
'mode'
"se c num '
'byte'

Length of a data buffer
Mode of OPEN (i.e., read, write, etc.)
Sector number, see section 8.1.2
Byte in sector, see section 8.1.2

Figure 8-2(con't.)

--109--

8.1.2 The I/O Commands

Figure 8-2 provides a table of I/O commands and their
usage of the various fields of the IOCB's. The first
seven are OS/A+ oriented and will be dealt with in part
A) of this section. The last six are File Manager
specific and are discussed in part B).

Most of the commands manipulate a device in some way,
so maybe we should talk about them for a moment.
Device names under OS/A+ are very simplistic: they
consist of a single letter optionally followed by a
single digit used to define a specific device when more
than one of the same kind exist (Ex.- Dl: or D2:).
Traditionally (and, in the case of Atari disk files, of
necessity) the device name is followed by a colon. The
following devices are implemented under standard OS/A+:

E: The keyboard/screen editor device. The normal
console output.

K: The keyboard alone. Use this device to bypass
editing of user input.

S: The screen alone. Can be either characters (ala E:)
or graphics.

P: On the Atari, the
driver allows only

printer. The
one printer.

standard device

C: The cassette recorder.

D: The disk file manager, which also usually requires a
file name.

Other device names are possible (e.g., for RS-232
interfaces), and in fact the ease with which other
devices may be added is another mark for the claim that
OS/A+ is a TRUE operating system. The structure of
device drivers is material for a later section (8.3),
but we should like to point out that, on the Atari, the
OS ROM includes drivers for all the above except the
disk. In fact, the drivers account for over SK bytes
of the ROM code. The screen handler, with all its
associated editing and GRAPHICS modes, occupies about
3K bytes of that.

--110--

A) The Standard OS/A+ Commands

The OS itself only understands a few fundamental
commands, but OS/A+ also provides for extended commands
necessary to some devices (XIO in BASIC). In any case,
each of these fundamental commands deserves a short
description.

OPEN

Open a device (synonyms: file, IOCB, channel) for read
and/or write access. OS expects ICAUXl to contain a
byte that specifies the mode of access:

ICAUXl
4
5
6
8
9
12
13

MODE
Read Only
Read Only Append
Read Directory Only
Write Only
Write Only Append
Read/Write (Update)
Read/Write Append/Update

NOTE: modes 5 and 13 are only available on version 4 of
OS/A+ (more information about them, 6, and 9 may be
found in part B). The name of the device (and, for the
disk, the file) must be given to OS; this is
accomplished by placing the ADDRESS of a string
containing the name in ICBADR.

CLOSE

Terminate access to a device/file. Only the command
must be given.

STATUS

Request the status of a device/file. The device can
interpret this request as it wishes, and pass back a
(hopefully) meaningful status. As with OPEN, the
ADDRESS of a filename must be placed in ICBADR.

GET TEXT

A powerful command, this causes the OS to retrieve
("GET") bytes one at a time from a device/file already
OPENed until either the buffer space provided by the
user is exhausted or a RETURN character (Atari $9B) is
encountered. The user specifies the buffer to use by
placing its ADDRESS in ICBADR and its maximum size
(length) in ICBLEN.

--111--

PUT TEXT

The analogue of GET TEXT, OS outputs characters one at
a time until a RETURN is encountered or the buffer is
empty. Requires ICBADR and ICBLEN to be specified.

GET DATA

Extremely flexible command, this causes OS to retrieve,
from the device/file previously OPENed, the number of
bytes specified by ICBLEN into the buffer specified by
ICBADR. NO CHECKS WHATSOEVER ARE PERFORMED ON THE
CONTENTS OF THE TRANSFERRED DATA.

PUT DATA

Similar to GET DATA, except that OS will output ICBLEN
bytes from the buffer specified by ICBADR Again, no
data checks are performed.

--112--

B) Commands Unique to the Disk File Manager System

Figure 8-2 shows several OS/A+ system commands not yet
discussed. These "extended" commands are accessed via
the extended request routine in a device driver's
handler table (see section 8.3 for details on deVice
drivers). However, some of these extended commands as
implemented for the disk device in the File Manager
System are important enough to deserve their own
sections. We'll examine each of the extended disk
operations in a little detail:

ERASE, PROTECT, and UNPROTECT

Also known as Delete, Lock, and Unlock, these three
commands simply provide OS with a channel number (i.e.,
the X-register contains IOCB number times 16), a
command number (ICCOM), and a filename (via
ICBADR). When OS passes control to the FMS, an attempt
is made to satisfy the request. Note that the filename
may include "wild cards", as in "D: *. ??S" (which will
affect all files on disk drive one which have an'S' as
the last letter of their filename extension).

RENAME

Very similar to ERASE, et aI, in usage. The only
difference is in the form of the filename. Proper form
is: "[Dn:]oldname.ext,newname.ext" Note that the disk
device specifier is not and CAN NOT be given twice.

NOTE and POINT

Other than OPEN, these are the only commands
encountered in standard OS/A+ which use any of the
AUXilliary bytes of the IOCB. For these commands, the
user specifies the channel number and command number
and then receives or passes file pointer information
via three of the AUX bytes. ICAUX3/ICAUX4 are used as
a conventional 6502 LSB/MSB 16-bit integer: they
specify the current (NOTE) or the to-be-made-current
(POINT) sector within an already OPENed disk file.
ICAUX5 is similarly the current (NOTE) or
to-be-made-current (POINT) byte within that sector. In
the case of OS/A+ version 4, the word "sector" might be
more properly replaced with the word "page", since the
NOTE/POINT addressing always uses 256 byte pages,
regardless of the physical sector size.

--113--

FMS Extensions of the OPEN Command

Open is not truly an extended operation, but for disk
I/O we need to know that the FMS allows two additional
"modes" beyond the fundamental as modes.
If ICAUXI contains a 6 when OS/A+ is called for OPEN,
then the disk DIRECTORY is opened (instead of a file)
for read- only access. The address ICBADR now
specifies the file (or files, if wild cards are used)
to be listed as part of a directory listing. Note that
FMS expects this type of OPEN to be followed by a
succession of GETREC (get text line) as calls.
If ICAUXI contains a 9, the specified file is opened as
a write-only file, but the file pointer is set to the
current end-of-file. CAUTION: version 4 FMS only
appends on sector boundaries (it links a new sector to
start the append, so there may be used space on the old
last sector).

Finally, under version 4
specifying that the file be
mode. See Appendix A.l
meanings of other bits in
version 4 of OS/A+.

8.1.3 Error Codes Returned

FMS, mode 13 is also legal,
opened in "Append/Update"
for more details on the
I CAUX1 and ICAUX2 under

On from any as call, the Y-register contains the
completion code of the requested operation. A code of
one (1) indicates "normal status, everything is okay".
(I know, why not zero, which is easier to check for.
Remember, we based this on Atari's as ROMs, which are
good, not perfect.) By convention, codes from $02 to
$7F (2 through 127 decimal) are presumed to be
"warnings". Those from $80 to $FF (128 through 255
decimal) are "hard" errors. These choices facilitate
the following assembly language sequence:

JSR CIOV
TYA
BMI OOPS

call the as
; check error code

if $80-$FF-, it must be an error

In theory, OS/A+ always returns to the user with
condition codes set such that the TYA is unnecessary.
In practice, that's probably true; but a little
paranoia often leads to longer life of both humans and
programs.

--114--

8.2: Manipulation of OS/A+

The writer of assembly language code will most likely
need to interface with the Atari Operating System (OS)
in some way. If the assembly code is to become an
extrinsic command, there may be a need to interface to
OS/A+. See section 8.2 for further information about
the OS interface.

are writing software designed to interface with
you may need to examine and/or modify certain
memory locations or access certain routines
OS/A+. This section lists and describes those
feel are the most useful.

If you
OS/A+,
special
within
that we

8.2.1 SYSEQU.ASM

Every OS/A+ master disk contains an assembler source
file, SYSEQU.ASM, that has various commonly used Atari
OS and OS/A+ system equates. This file may be included
in an assembly language program via the OSS MAC/65
include function (.INCLUDE #Dl:SYSEQU.ASM): however, it
exists on the master disk as a text file and must be
'ENTER'ed into MAC/65 and then 'SAVE'ed back to the
disk.

8.2.2 OS/A+ MEMORY LOCATION

OS/A+ on the Atari is designed to be placed just after
the Atari File Manager. Since the actual location of
OS/A+ may vary with different versions of a file
manager, a fixed location has been assigned to point to
OS/A+. The location CPALOC($0A on the Atari) contains
the address of the OS/A+ warmstart entry point. Most
Atari programs should return to OS/A+ by JMPing to the
address contained in CPALOC.

--115--

8.2.3 EXECUTE PARAMETERS

The OS/A+ execute flag is located CPEXFL ($0B) from the
start of OS/A+. The CPALOC may be used as an indirect
pointer to access the execute flag:

LDY
LDA

#CPEXFL
(CPALOC), Y

DISPL TO FLAG
FLAG

The Execute Flag has four bits that control the execute
process:

Name
EXCYES
EXCSCR

EXCSUP

EXCNEW

Bit #
$80
$40

$20

$10

If one, an execute is in progress
If one, do not echo execute input
to screen
If one, a cold start execute is
starting.Used to avoid a FILE NOT
FOUND error if STARTUP.EXC is not
on boot disk.
If one, a new execute is start-
ing. Tells OS/A+ to start with
the first line of the file

OS/A+ performs the execute function by OPENing the
file, POINTing to the next line, READing that line,
NOTEing the new next line and CLOSEing the file. To
perform these functions, OS/A+ must save the execute
file name and the three byte NOTE values. The filename
is saved at CPEXFN ($0C) into OS/A+. The three NOTE
values are saved at CPEXNP($lC) into OS/A+.

CPEXNP+2=ICAUX3). By
changing the various execute control parameters, a
programmer can cause chaining of execute files.

8.2.4 DEFAULT DRIVE LOCATION

Under Atari version
spec is located at
Default Drive here
ATASCII default drive

2, the OS/A+ default drive file
CPDFDV ($07) into OS/A+. The
is ATASCII Dn: where "n" is the
number.

--116--

8.2.5 EXTRINSIC PARAMETERS

The extrinsic commands may be called with parameters
typed on the command line. The OSS command

Ol:COPY FROMFILE 02:TO FILE

is an example of this. The entire command line is
saved in the OS/A+ input buffer located at CPCMDB ($40)
bytes into OS/A+ and is available to the user. Since
most command parameters are file names, OS/A+ provides
a means of extracting these parameters as filenames.
The routine that performs this service begins at CPGNFN
($03) bytes into OS/A+. The routine will get the next
parameter and move it to the filename buffer at CPFNAM
($21) bytes in OS/A+. If the parameter does not
contain a device prefix, then OS/A+ will prefix the
parameter with the default drive prefix. The first
time COpy calls CPGNFN the file spec "Dl:FROMFILE" is
placed at CPFNAM. The second time COpy calls CPGNFN
the file spec "D2:TO FILE" is placed in CPFNAM. If
CPGNFN were to be called more times, then the default
file spec would be set into CPFNAM at each call. To
detect the end of parameter condition, the user may
check the CPBUFP ($0A into OS/A+) cell. If CPBUFP does
not change often a CPGNFN call then there are no more
parameters. The filename buffer is always padded to 16
bytes with ATASCII EOL ($9B) characters. The following
example sets up a vector for calling the get file name
routine:

CLC
LOA
ADC
STA
LOA
ADC
STA
GETFN

CPALOC
#CPGNFN
GETFN+l
CPALOC+l
#0
GETFN+2
JMP 0

CPGNFN
CPALOC VALUE

AND PLACE IN
FIELD

JUMP

The following routine gets the next file name to
CPFNAM:

LOY #CPBUFP CPBUFP
LOA (CPALOC), Y
PHA
JSR GETFN NEXT FILE PARM
LDY #CPBUFP
PIA FOR NO NEXT
CMP (CPALOC), Y PARM
BEQ NONEXT BR IF NO NEXTPARM
LDY #CPFNAM ELSE GET FILE
LOA (CPALOC), Y NAME FROM BUFFER

--117--

B.2.6 RUNLOC

Whenever an Extrinsic command is invoked, RUNLOC ($3D
into OS/A+) is given the value of the first address in
that command's .COM file. Some Extrinsic commands
(including user written commands) can therefore be
restarted by typing the RUN command. You may want to
change the contents of RUNLOC to point to the warmstart
point ofyour program when it's entered the first time
to avoid unwanted reinitializations when re-entered.
BASIC A+ and MAC/65 do this to avoid clearing any user
program which may be in memory when returning from
OS/A+. If you want to forbid re-entry, you need to set
RUNLOC's high order byte ($3E into OS/A+) to zero:

LDY
LD/\
STA

#RUNLOC+l
#3
(CPALOC), Y

;FORBID RE-ENTRY
;TO ME

B.3: DEVICE HANDLERS

As we have noted before, CIO is actually a very small
program (approximately 733 bytes). Even so, it is able
to handle the wide variety of I/O requests detailed in
the first two parts of this chapter with a surprisingly
simple and consistent assembly language interface.
Perhaps even more amazing is the purity and simplicity
of the OS interface to its device handlers.

Admittedly, because of this very simplicity, OS/A+ is
sometimes slower that one would wish (only noticeably
so with PUT BINARY RECORD and GET BINARY RECORD) and
the handlers must be relatively sophisticated. But not
too much so, as we will show.

B.3.1 The Device Handler Table

At location "HATABS" in RAM, OS/A+ has (loaded from ROM
on the Atari) a list of the standard devices (P:,
D:,E:,S:, and K:) and the addresses thereof. To add a
device, simply tack it on to the end of the list: you
need only specify the device's name (one character) and
the address of its handler table (more on that in a
manent) .

In theory, all named device handlers under OS/A+ may
handle more than one physical device. Just as the disk
handler understands "Dl:" and "D2:", so could a
keyboard handler understand "KI:" and "K2:". OS/A+
supplies a default sub-device number of "I" if no
number is given (thus "D:" becomes "DI:").

--l1B--

Following is the layout of the HAndler TABleS on the
Atari:

*= $03lA
HATABS

. BYTE 'p' the Printer device

.WORD PDEVICE and the address of its driver

.BYTE 'c' the Cassette device

.WORD CDEVICE

. BYTE 'E' the screen Editor device

.WORD EDEVICE

. BYTE 's' the graphics Screen device

.WORD SDEVICE

. BYTE 'K' the Keyboard device

.WORD KDEVICE

. BYTE 0 zero marks the end of the
table

.WORD 0 ; ...but there's room for
several

. BYTE 0 ., .more devices
et cetera

8.3.2 Rules for Writing Device Handlers

Each device which has its handler address placed into
the handler address table (above) is expected to
conform to certain rules. In particular, the driver is
expected to provide six (6) action subroutines and an
initialization routine. (In practice, the current
OS/A+ only calls the initialization routines for its
own pre-defined devices. Since this may change in the
future, and since one can force the call to one's own
initialization routine, we must recommend that each
driver include one, even if it does nothing.) The
address placed in the handler address table must point
to, again, another table, the form of which is shown
below (Figure 8.1).

HANDLER
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
JMP

<address of OPEN routine>-l
<address of CLOSE routine>-l
<address of GETBYTE routine>-l
<address of PUTBYTE routine>-l
<address of STATUS routine>-l
<address of XIO routine>-l
<address of initialization routine>

Figure 8-3

--119--

Notice the six addresses Which must be specified; and
note that in the table one must subtract one from each
address (the "-1" simply makes CIO' s job
easier •.. honest). A brief word about each routine is
given in the following pages.

Device OPEN

The OPEN routine must perform any initialization needed
by the device. For many devices, such as a printer,
this may consist of simply checking the device status
to insure that it is actually present. Since the
X-register, on entry to each of these routines,
contains the IOCB number being used for this call, the
driver may examine ICAUXI (via LDA ICAUXl,X) and/or
lCAUX2 to determine the kind of OPEN being requested.
(Caution: OS/A+ preempts bits 2 and 3 ($04 and $08) of
lCAUXl for read/write access control. These bits may
be examined but should normally not be changed.)

Device CLOSE

The CLOSE routine is often even simpler. It should
"turn off" the device if necessary and possible.

Device PUT and GET BYTE Routines

The PUTBYTE and GETBYTE routines are just what are
implied by their names: the device handler must supply
a routine to output one byte to the device and a
routine to input one byte from the device. HOWEVER,
for many devices one or the other of these routines
doesn't make sense (ever tried to input from a
printer?). In this case the routine may simply RTS and
OS/A+ will supply an error code.

Device STATUS Routine

The STATUS routine is intended to implement a dynamic
status check. Generally, if dynamic checking is not
desirable or feasible, the routine may simply return
the status value it finds in the user's IOCB. However,
it is NOT an error under OS/A+ to call the status
routine for an unOPENed device, so be careful.

--120--

Device Extended I/O Routine(s)

The XIO routine does just what its name implies: it
allows the user to call any and all special and
wonderful routines that a given device handler may
choose to implement. OS does nothing to process an XIO
call except pass it to the appropriate driver.

General Comments on Device I/O Routines

In general, the AUXilliary bytes of each IOCB are
available to each driver. In practice, it is best to
avoid ICAUXI and ICAUX2, as several BASIC and OS
commands will alter them to their will. Note that
lCAUX3 thru ICAUX5 may be used to pass and receive
information to and from BASIC via the NOTE and POINT
commands (which are actually special XIO commands).
Finally, drivers should not touch any other bytes in
the IOCBs, especially the first two bytes.

Notice that handlers need not be concerned with PUT
BINARY RECORD, GET TEXT RECORD, etc.: OS performs all
the needed housekeeping for these user-level commands.

8.3.3 Rules for Adding Things to OS

1. Inspect the system MEMLO pointer (see
SYSEQU.ASM for the actual location).

2. Load your routine (including needed buffers)
at the current value of MEMLO.

3. Add the size of your routine to MEMLO.
4. Store the resultant value back in MEMLO.
5. Connect your driver to OS by adding its name

and address into the handler address table.
6. For Atari handlers only:

Fool OS so that if SYSTEM RESET is hit
steps 3 thru 5 will be reexecuted
(because SYSTEM RESET indeed resets the
handler address table and the value of
MEMLO) .

In point of fact, step 2 is the hardest of these to
accomplish. In order to load your routine at wherever
MEMLO may be pointing, you need a relocatable (or
self-relocatable) routine. Since there is currently no
assembler for OS/A+ which produces relocatable code,
this is not an easy task. But it may not be necessary
if you are writing code for your own private system
instead of the general public.

--121--

Step 6 is accomplished by making Atari OS think that
your driver is the Disk driver for initialization
purposes (by "stealing" the DOSINI vector) and then
calling the Disk's initializer yourself before steps 3
thru 5 are performed again.

--122--

8.3.4 AN EXAMPLE PROGRAM

This driver, included in source form on your disk as
"MEM.LIS", builds a new driver and adds it to the
operating system. The "device" being driven is simply
excess system memory within your computer. Thus, you
may (for example) use this are as a pseudo-disk file
for passing data between sequentially called programs.

Some words of caution are in order. This driver does
NOT perform step 6 as noted in the last section (but it
may be reinitialized via a BASIC USR call). It does
NOT perform self-relocation: instead it simply locates
itself above all normal low memory usage (except the
serial port drivers, which would have to be loaded
AFTER this driver). If you assemble it yourself, you
could do so at the MEMLO you find in your normal system
configuration (or you could improve it to be self-
modifying, of course).

Other caveats pertain to the handler's usage: it uses
RAM from the contents of MEMTOP downward. It does NOT
check to see if it has bumped into BASIC's MEMTOP ($90)
and hence could conceivably wipe out programs and/or
data. To be safe, don't write more data to the RAM
than a FRE(0) shows (and preferrably even less).

In operation, the M: driver reinitializes upon an OPEN
for write access (mode 8). A CLOSE followed by a
sUbsequent READ access will allow the data to be read
in the order it was written. MORE CAUTIONS: don't
change graphics modes between writing and reading if
the change would use more memory (to be safe, simply
don't change at all). The M: will perform almost
exactly as if it were a cassette file, so the user
program should be data sensitive if necessary: the M:
driver will NOT itself give an error based on data
contents. Note that the data may be re-READ if desired
(via CLOSE and re-OPEN).

A suggested set of BASIC programs is presented on the
next page.

--123--

Ending of PROGRAM 1:
9900 OPEN #2,8,0,"M:"
9910 PRINT #2: LEN(A$)
9920 PRINT #2: A$
9930 CLOSE #2
9940 RUN "D:PROGRAM2"

Beginning of PROGRAM 2:
100 OPEN #4,4,0,"M:"
110 INPUT #4,SIZE
120 DIM STRING$(SIZE)
130 INPUT #4, STRING$
140 CLOSE #4

BASIC A+ users might find RPUT/RGET and BPUT/BGET to be
useful tools here instead of PRINT and INPUT. And, of
course, users of any other 1anguage(s) might find this
a handy inter-program communications device.

--124--

CHAPTER 9: FILE STRUCTURE

9.1: Version 2 File Structure

OS/A+ version 2 was produced to provide the maximum
compatibility possible with Atari's DOS 2.0s. In fact,
the FMS used is identical to that used by Atari (for a
simple reason: we wrote Atari's DOS). For reasons
known best to Atari, we were instructed to create
Atari's FMS around a linked-sector disk space
management scheme. In essence, this means that the
last three bytes of each sector in a disk file contain
a link to the next sector in that same file. The
positive result of this is that one produces a
relatively small, memory-resident, disk manager which
is nevertheless capable of dynamically allocating
diskette space (unlike, for example, a contiguous file
disk manager). The biggest disadvantage of the scheme
seems to be that one may not do direct (random) access
to the bytes of such files, as one CAN do with either a
contiguous or mapped file allocation technique. Also,
a disk error in the middle of a linked file means a
loss of access to the rest of the file.

The purpose of the FMS is to organize the 720 data
sectors avilable on an 810 (or its double density
equivalent) diskette into a system of named data files.
FMS has three primary data structures that it uses to
organize the disk:

1. Volume Table of Contents (VTOC): a single disk
sector which keeps track of which disk sectors are
available for use in data files.

2. Directory: a group of eight contiguous sectors
used to associate file names with the location of
the files' sectors on the disk. Each Directory
entry contains a file name, a pointer to the first
data sector in the file, and some miscellaneous
information.

3. Data Sectors: sectors containing the actual
data and some control information that links one
data sector to the next data sector in the file.

NOTE: since double density diskette sectors contain 256
bytes whereas single density (810 drive) sectors
contain only 128, certain absolute byte number
references may vary depending upon the diskette in use.
Throughout this chapter, in such cases, the single
density number is given followed by the double density
number in square brackets [thus].

--125--

•

9.1.1 DATA SECTORS

A Data Sector is used to contain the file's data bytes.
Each 128 [256] byte data sector is organized to hold
125 [253] bytes of data and three bytes of control.
The data bytes start with the first byte (byte 0) in
the sector and run contiguously up to, and including,
byte 124 [252]. The control information starts at byte
125 [253].

The sector byte count is contained in byte 127 [255].
This value is the actual number of data bytes in this
particular sector. The value may range from zero (no
data) to 125 [253] (a full sector). Any data sector in
a file may be a short sector (contain less than 125
[253] data bytes).

The left six bits of byte 125 [2531 contain the file
number of the file. This number correspoinds to the
location of the file's entry in the Directory.
Directory entry zero in Directory sector $169 has a
file number of zero. Entry one in Directory sector
$169 has a file number one, and so forth. The file
number value may range from zero to 63 ($3F). The file
number is used to insure that the sectors of one file
do not get mixed up with the sectors of another file.

The right two bits of byte 125 [253J (and all eight
bits of byte 126 [254]) are used to point to the next
data sector in the file. The ten bit number contains
the actual disk sector number of the next sector. Its
value ranges from zero to 719 ($2CF). If the value is
zero then there are no more sectors in the file sector
chain. The last sector in the file sector chain is the
End-Of-File sector. The End-Of-File sector will almost
always be a short sector.

9.1.2 DISK DIRECTORY

The Directory starts at disk sector $169 and continues
for eight contiguous sectors, ending with sector $170.
These sectors were chosen for the directory because
they are in the center of the disk and therefore have
the minimum average seek time from any place else on
the disk. Each directory sector has space for eight
file entries. Thus, it is possible to have up to 64
files on one disk.

--126--

A Directory entry is 16 bytes in size, as illustrated
by Figure 9-2. The directory entry flag field
specific status information about the current entry.
The directory count field is used to store the number
of sectors currently used by the file. The last eleven
bytes of the entry are the actual file name. The
primary name is left justified in the primary name
field. The name extension is left justified in the
extension field. Unused filename characters are blanks
($20). The Start Sector Number field points to the
first sector of the data file.

Starting
Byte #
of Field

1

3

5
13

Length
of Field
(bytes)

1

2

2

8
3

Purpose of Field

Flag byte. Meanings of
bits:
$00 Entry never used
$80 Entry was deleted
$40 Entry in use
$20 Entry protected
$02 a version 2 file
$01 Now writing file
Count (LSB,MSB) of
sectors in file

Start sector (LSB,MSB)
of link chain

File name, primary
File name, extension

Figure 9-2

Directory Entry Structure

--127--

(sector $169)
first directory

sector

more I
FILEA I
sectors I

I
sector 1
1 of I
FILEB 1

I
-----1
I link' --» etc.

sector ,
1 of I
FILEA I

I
------1
, link I --»

---»
--+

I
I
I
I
I
I,
I
I
+--»

ptr
ptr

FILEA
FILEB
etc.

1
-I
1 ,
1 I
-I I
1 I 1
1 I 1
-I 1 I, , --------------
I I(sector $16A) I
I --------------I etc.

Figure 9-2

Version 2 Directory Structure

NOTE: only eight file directory entries are stored per
sector, even on double density diskettes.

--128--

9.1.3 VOLUME TABLE OF CONTENTS (VTOC)

The VTOC sector ($168) is used to keep
disk sectors are available for data file
9-3 illustrates the organization of the
The most important part of the VTOC is
map.

track of which
usage. Figure
VTOC sector.
the sector bit

The sector bit map is a contiguous string of 90 bytes,
each of which contains eight bits. There are a total
of 720 (90 x 8) bits in the bit map--one for each
possible sector on an 810 diskette. The 90 bytes of
bit map start at VTOC byte ten ($0A). The leftmost bit
($80 bit) of byte $0A respresents sector zero. The bit
just to the right of the leftmost bit ($40 bit)
represents sector one. The rightmost bit (bit $01) of
byte $63 represents sector 719.

Starting
Byte #
of Field

o
1
3
5
10

100

Length
of Field
(bytes)

1
2
2
5
90

28

purpose of Field

Reserved (for type code)
Total number of sectors
Number of unused sectors
Reserved
Sector usage bit map
Each bit represents a
particular sector:
a 1 bit indicates an
available sector,
a 0 bit indicates a
sector in use.

Reserved (could be used
for version 2 type
DOS with more than
720 sectors per disk)

Figure 9-3

Structure of the VTOC Sector

--129--

9.2 Version 4 File Structure

OS/A+ version 4 is an operating system which provides
all the power and flexibility of the Atari CIO scheme,
and also uses an advanced File Management System (FMS)
to provide fast and effective random access files.
OS/A+ version 4, as it appears to the user, is
virtually identical with OS/A+ version 2, except that
it work with disk drives ranging in storage size from
l28K bytes to over 15 Megabytes.

OS/A+ version 4 utilizes a mapped file structure which
allows true random access to data files. In such a
scheme, special segments of a file act as pointers to
the blocks of data comprising a file. By allowing the
user to specify the size of the data blocks pointed to,
OS/A+ is able to handle large and small files and disks
with unsurpasssedspeed and utility.

The OS/A+ random access file managment system treats
each disk under its control as a collection of
contiguous physical sectors of either 256 or 512 bytes
in length, which are numbered starting with sector
zero. These sectors are logicaly grouped into blocks
of n sectors in length, where n is a power of two
between 1 and 128. All files on a disk are allocated
space in segments of at least one block in length.

--130--

Iptrl
1---,
I VTOC
I
I

volume table of contents
(sector $168)

first directory
sector

--> 1 FILEA l pt.r] --> first block of FILEA's file map
I I I
-I I 1 more file map blocks
I I FILEB Iptrl --> I link I --> (0 terminates list)
-I I etc. I 1 1----1
I I I I 1 Iptr I --> first block of FILEB
I 1 1 I I 1----1
1 1 I sector $169 1 Iptr I --> 2nd block of FILEB
1 I ------------ 1----1
I Isector $16A I letc.1
I ------------ I I
1 etc. I I first block of
------------ , I FILEB's file map

Figure 9-4

Version 4 File Structure

--131--

There are
scheme, so
them.

several non-obvious advantages to this
bear with us as we try to explain some of

A. We are able to handle disks with 128, 256, or' 512
bytes per sector. (To be truthful, with 128 bytes
per sector drives we would use pairs of sectors to
emulate 256 byte sectors, since a 128 byte file map
is not really adequate.)

B. We allow each DISK DRIVE to be assigned its own
"drive blocking factor". That means that a
quadruple density floppy might have blocks
consisting of two 256-byte sectors while a 10 MB
disk might use blocks of four 512-byte sectors.
Note that this concept of blocking factors is not
new or unique: CP/M 2.2 allows blocking factors of
lKB, 2KB, and 4KB, depending on disk size. We are
simply a little more flexible.

C. We allow each FILE to be assigned its own "file
blocking factor". Thus, even on a floppy with 512
byte blocks, a given FILE may use 8 KByte blocks,
thus guaranteeing at most one disk read to access
any given sector of the file. (On the Apple II
version of this product, where the drive blocking
factor is perforce 1 for standard Apple drives, a
file blocking factor of 8 2 KByte blocks --
essentially doubles random access speed.)

D. Although not yet implemented nor planned for first
release, the directory structure is set up in such
a way that, if desired, we could implement multiple
and/or hierarchical directories (ala UNIX, for
example). Even CIa (on the Apple II) has been
altered to support the concept of a default device
and/or directory.

E. Random access files
Unix-like "LSEEKs"
"POINT" XIO call in
any file.

are easy and practical.
are accomplished (via the
section x.xx) to any byte of

F. Except for those rare programs that somehow depend
on having 125 bytes of data per sector, current
Atari application programs (including Atari BASIC
and programs written thereunder) will notice NO
CHANGE in their interface with the operating
system. Of course, some of the currently unused
options will be available to take advantage of such
features as file blocking factors, but they will
not be necessary to the proper functioning of the
system.

--132--

9.2.1 THE VERSION 4 VTOC

In order to keep track of what blocks on a partiular
disk are available for use, the file manager maintains a
special section on each disk known as the volume table
of contents, or VTOC. The VTOC on a disk consists of
1 or more sectors which contain the bitmap (a long
string of bits in which the Nth bit represents the Nth
block on the disk). Each bit may be turned on or off
to free or allocate (respectively) the block it
represents. Note that the VTOC is the only data area
on the disk allocated by sectors instead of blocks.
The format of the VTOC is as follows:

hex offset

o
1-2
3
4-5
6
7-26
27

28-2F
30-33
34
35
36-37
38-

value

unused
block no. of first directory sector
unused
unused
unused
unused
max. number of pointers in file map
sectors ($7A for disks with 256-byte
sectors: $F4 for 512-byte sector
disks)
unused
unused
unused
unused
unused
disk block bit map

--133--

9.2.2 THE DIRECTORY

The disk directory holds information describing the
existing files on a particular disk. The directory is
allocated on the disk by disk blocks, each sector of
Which holds information on a certain number of files (7
for 256-byte sectors, 14 for 512-byte sectors). The
blocks themselves are linked, each one holding the disk
address (block number) of its successor, with the last
block having a null link (block number 0). Each
entry of the directory describes a particular file. An
entry for a single file contains the file's name, its
length in sectors (see exceptions for DOS 3.3
diskettes), its file type byte (see below), and a
pointer to the start of the file map for that file.

The file name consists of a string of up to 30
characters excluding spaces, commas, carriage returns,
or nulls. Characters within a directory entry will
have their upper bit inverted. the file name will be
padded at the right with inverse video blanks (hex
$M) •

The file type byte is used as follows:

BITS 0-3: file use type -- values 0,1,2, and 4 are
currently used on the Apple system while only 0 is used
on the Atari.

BITS 4-6: file blocking factor -- a value from 0 to 7
(see next section)

BIT 7: file protection -- if this bit is set then the
file is protected from accidental write access,
erasure, or renaming. The pointer to the start of the
file map is a two byte value which is the disk block
number of the first file map map block.

Format of directory sectors:

hex offset value

o
1-2

3-A
B-

unused
block number of next directory block (0 if
this is the last block)
unused
directory entries (35 bytes each)

--134--

Format of directory entries:

hex offset

0-1
2
3-20
21-22

value

block number of first block in file map
file type
file name
length of file in sectors

--135--

9.2.3 THE FILE MAP

As previously mentioned OS/A+ version 4 utilizes a
mapped file structure where special portions of a file
point to the locations on the disk holding the actual
data. These special sections comprise the file map,
Which is a singly linked list of disk blocks which
contain pointers to the data blocks of a file. Each
file map sector has the following format:

hex offset

o
1-2

3-4
5-6
7-B
c-

value

unused
block number of next file map block (zero
if this block is the last)
unused
unused
unused
sequential list of block numbers in file
(2 bytes per block number)

A pointer to a file block is merely the disk block
number of the start of a file block. For most
purposes, a file block is equivalent in size to a disk
block, However, the file manager allows the user to
specify a file blocking factor which alters the size of
data blocks for a single file. A file blocking factor
of zero implies that file blocks are equivalent to disk
blocks. A file blocking factor of 1, though, makes
file blocks equivalent to 8 disk blocks in length.
Similarly, a factor of 2 creates file blocks which are
16 disk blocks in length. While the use of a file
blocking factor has little or no consequence for
sequentially accessed files, it offers 2 distinct
advantages for random access files. First, the size of
the file map will be reduced, thereby decreasing the
average number of disk accesses requrired to access
data. Second, the file's data sectors are likely to be
less fragmented on the disk, thereby decresing the
average head movement required to access data sectors.
The only disadvantage of using a file blocking factor
is that disk space is allocated much more rapidly than
otherwise, making this technique undesirable for small
files.

--136--

9.2.4 BUFFER ALLOCATION

The file manager requires a continuous block of memory
from which to allocate buffer space. Data passing
between disk files and user programs is temporarily
stored here. The address of the start of this space is
contained in location SASA (see system memory map), and
its length in pages (256 bytes) is in SABYTE. The
values in these locations may be changed by the user
Whenever all files are closed; however, the system must
then be re-initialized either by jumping to the system
reset location or by calling the file manager
initialization subroutine.

The buffer space is allocated in this manner:

1. When the system is
space for each disk
The space required for
in bytes.

booted (or reinitialized),
drive's VTOC is allocated.
a given VTOC is its length

2. When
space is
sectors.

a file is opened on a given disk drive,
required to hold 2 of that drive's

EXAMPLE: Suppose a system has 2 disks, both with
256-byte sectors. There will be 2 VTOC buffers (a VTOC
is usually 1 sector long), so there's a total of 512
bytes. Each open file will have file map and data
buffers, a total of 512 bytes per open file (two
256-byte sectors). Therefore, allowing for 3 open
files at one time, there should be three 512-byte
buffers for the files, plus the 512 bytes of buffer for
the VTOCs, for a total of 8192 bytes (8 pages) of
buffer space (i.e., SABYTE = 8).

--137--

9.2.5 ADDING DRIVES

In order to integrate a new disk drive into the system,
the disk must first be initialized with the OS/A+
verion 4 file structure. Please refer to the section
describing the IN IT utility for instructions on using
INIT. Source code of INIT is available for users
contemplating adding their own disk devices.

In order to access a new drive, it must be installed
into the disk drive table within the file manager.
This table consists of 8 entries of 16 bytes each
starting at location DRVTAB (see memory map). Each
entry in this table contains the folowing information:

byte(s) value

drive type-- l=Apple Disk II
0=other disk

1
2

3
4-5
6

9-10
11

12-15

reserved
size of disk sectors-- 1=256 byte

2=512 byte
disk blocking factor; sectors/block
sector no. of disk's VTOC
no. of sectors in VTOC
address of read/write sector routine
minus one
(set by file manager)
file map sector size-- $7A for 256 byte
sectors; $F4 for 512 byte sectors
(set by file manager)

As can be seen, the drive table entry contains the
address of the routine to read and write sectors on the
disk. This routine may be located anywhere in memory.
(See the next section for a description of the
parameters to this routine).

Once the drive has been added to the drive table and
the read write sector routine has been loaded, the
system must be re-initialized by jumping to the system
reset location. The new disk may then be accessed as
On: where the disk is the nth entry in the drive table
(n starts from 1).

NOTE: more than one disk drive may be serviced by a
single read/write sector routine.

--138--

THE READ/WRITE SECTOR ROUTINES

Each read/write sector routine receives its parameters
through the Device Control Block, or DCB (see memory
map). The format of the DCB is as follows:

Byte 0:
Byte 1:
Byte 2:
Byte 3:

Bytes 4-5:
Bytes 6-7:
Bytes 8-9:
Bytes 9-A:

machine oependent (unused on Apple)
DCBDRV disk drive number (1-8).
DCBCMD command (0=null, l=read, 2=write).
DCBSTA status byte (set by read/write
sector) .
DCBBUF buffer address in low, high order.
machine dependent (unused on Apple)
machine dependent (unused on Apple)
DCBSEC sector number--to be accessed in
low, high order

See the table in Chapter 13 for valid status values.

--139--

CHAPTER 10: VERSION DIFFERENCES

As much as we would like to, we can't produce all three
versions of OS/A+ in such a manner that they will be
100% compatible. And, of course, there are also minor
differences between OS/A+ and Atari DOS.

In this chapter we will try to document as many known
major differences as we can. We will probably miss one
or two, so please don't hesitate to call or write us if
you intend to write software which will run on more
than one version of OS/A+. We will try to keep a list
of any other differences we (or you) find.

Of course, if you are working entirely within one of
our OS/A+ configurations, most of this is unneeded
information. perhaps you need to be aware only of the
differences between OS/A+ and your computer's "normal"
operating system.

--140--

10.1 FEATURES SPECIFIC TO VERSION 4 OF THE FILE MANAGER

OS/A+ version 4 contains several capabilities and
enhancements which are not available under version 2 or
Atari DOS. A summary of these added features follows:

10.1.1 RANDOM ACCESS:

As previously mentioned, OS/A+ version 4 allows true
random access to data files. This capability is
provided through the usage of the NOTE and POINT
operating system calls. Unlike its predecessor,
version 4 expects the data in ICAUX3-ICAUX5 to be a 24
bit RELATIVE position within a file (in mid, high, low
byte order). This allows the user to use the POINT
command to easily move to any position within a file of
16 megabytes or less in size. Similarly, the data
returned by the NOTE command is a 3 byte RELATIVE
position value which is placed in ICAUX3-ICAUX5 by the
file manager. Notice also that a random access file
may contain "holes" created by writing non-contiguous
portions of a file without writing the intervening
data.

10.1.2 FILE TYPES:

Version 4 of OS/A+ also supports a file type byte which
is also used to indicate the file's file map blocking
factor (see section 10.4) and its protection. When a
file is created, this byte is set into the file's
directory entry; its value is zero by default. In
order to place a value other than zero into the file
type byte when a file is created, bit 6 of ICAUXI must
be set (i.e. add $40, or 64, to the mode during an
OPEN command). The desired file type must be placed in
ICAUX2 (the second value in a BASIC open statement).
Whenever a file is opened, the current value of its
type byte is returned in ICAUX2.

10.1.3 SUPPRESSING AUTOMATIC FILE CREATION:

Normally, when a file is opened in mode 8, it is
created, if the file did not previously exist, or
truncated, if it did exist. It is occasionally
desirable to suppress creation or truncation when
opening a file in mode 8, in which case an error would
occur when attempting to open a non-existent file. If
a file is opened in mode 8 and bit 5 of ICAUXI is set
(i.e., add $20, or 32, to the mode value), then the
creation or truncation of the file will be prevented.

--141--

10.2 DIFFERENCES: ATARI DOS AND OS/A+

There are very few points of difference between Atari
DOS and version 2 of OS/A+, other than the fact that
Atari DOS uses DUP.SYS while OS/A+ uses its Command
Processor. And, actually, there are few differences
between version 2 and version 4 of OS/A+ AS SEEN BY AN
APPLICATIONS PROGRAM (including BASIC A+, etc.). Since
the differences are generic, rather than specific to a
particular version, they will be discussed by category.

10.2.1 MEMORY USAGE

The only real problem that can exist here is in the
location of LOMEM, the beginning of user application
memory. If a program written for Atari DOS (or OS/A+
version 2, for that matter) has assumed a particular
LOMEM, it may not run under a version with a higher
LOMEM. To illustrate, the following table lists the
LOMEM value that will result in each of several cases
if we assume a system configuration of 2 disk drives
allowing 3 disk files open at the same time.

version LOMEM contents

Atari DOS 2.0s, $lC00
single density disks

Atari DOS 2.0s, $lE80
double density disks

OS/A+ version 2, $lF00
single density disks

OS/A+ version 2, $2180
double density disks

OS/A+ version 4 $2C00

Of course, by changing the contents of SASA and SABYTE
(see chapters 12 and 13), the user may change the
location and number of buffers, so a certain measure of
LOMEM independence may be obtained by, for example,
placing the buffers somewhere within an application
program's memory space. However, even this is not
foolproof: examine the memory map of chapter 13 for
more details.

--142--

10.2.2 END OF FILE

Atari DOS and OS/A+ version 2 both are capable of
knowing exactly where a file ends, since each sector
"knows" (via its 3 byte link information) how many
bytes it contains. OS/A+ version 4, however, DOES NOT
KNOW exactly where the END OF FILE is. In fact,
version 4 will not report end of file until it reaches
the end of the last sector in the file. Normally, this
has little if any effect on a user program.

In particular, if reading text lines, the system will
read the last line the same on either version. Then,
When an attempt is made to read the first line past the
end of file, version 2 reports an immediate error.
Version 4, however, will begin passing the trailing
zero bytes to CIO. However, CIO will not end the
transfer until it receives an ATASCII RETURN code ($9B)
(it expects to return an error 137, truncated record,
if the user buffer is too short for all those null
bytes). But the file manager finally returns the end
of file signal, and CIO ignores any previous errors to
return the EOF code.

With binary files, the problem is more subtle, since a
binary record of all nulls is perfectly legal.
However, most user programs on the Atari will have been
built in such a way as to be aware of how many records
are in a given file. And, if they have not been so
built, there is usually at least one field in the
record Which cannot contain a null result. That field
may be checked for nulls as an end of file test.

NOTE: virtually any Atari DOS program which used
indexed files (via NOTE and POINT) will function
properly under version 4. Of course, programs which
"take over" the entire disk may fail, but that is
because there are 256 bytes per sector and their direct
SIO calls are now improper, which has nothing to do
with DOS.

--143--

10.2.3 RANDOM ACCESS

This subject has been treated more thoroughly in
preceding sections and pages, but let us at least
mention here that programs using NOTE and POINT
properly under DOS 2.0 or OS/A+ version 2 will need no
changes to move to version 4.

Of course, programs using the direct random access
capabilities of version 4 (i.e., the ability to POINT
relative to the beginning of a file, without the need
to have previously NOTEd) will not transfer back to
version 2. Sorry, but that's the price one must pay
for using advanced features.

10.2.4 FILE BUFFERS

In order for OS/A+ to function properly, it requires
special segments of memory (called file buffers) to be
allocated for the purpose of temporarily holding
information passing between disk files and a user
program. For some purposes, the user may wish to move
these buffers from their default locations (see system
memory map). All OS/A+ systems use the concept of a
"Begin Buffer Allocation Here" address and a location
telling OS/A+ to "Allocate This Many Buffers". The
label SASA in the memory map (or, better, SYSEQU.ASM)
defines a word containing the starting address of the
buffers. The label SABYTE defines the number of
buffers to be allocated.

CAUTION: under Atari DOS and version 2 of
refers to the number of 128 byte buffers
Under version 4 of OS/A+, SABYTE contains
256 byte PAGE buffers to allocate.

OS/A+, SABYTE
to allocate.
the number of

SECONDARY CAUTION: Remember the allocation requirements
differ between single and double density disks under
version 2 and Atari DOS.

10.2.5 SECTORS 1, 2, and 3

To insure compatibility with the Atari Computer boot
process, OS/A+ (both versions) always reads and writes
Sectors 1, 2, and 3 in single density (128 byte) mode.
This single density "force" occurs at the BSIO level,
so programs using BSIO may do so in a compatible
fashion. •

--144--

APPENDIX A - CUSTOMIZING OS/A+

Although OS/A+ was designed and implemented with the
average user in mind, no one piece of software can ever
be all things to all people. For that reason, a
degree of flexibility exists over certain aspects of
the system which allows the user to modify OS/A+ to
suit his own tastes. The following sections describe
the most useful modifications which may be performed.

A.l BUFFER ALLOCATION

Both versions of OS/A+ allow the user to specify the
starting address of the system file buffers and the
number of buffers to be used. The location of the
words which specify these parameters varies between
version 2 and version 4 and, in any case, is not
guaranteed to remain fixed in future releases.
Therefore, it is strongly suggested that the user
desiring to change one or both of these values check
the file "SYSEQU.ASM", supplied on the OS/A+ disk, to
be sure of the latest system value. As of the printing
of this manual, the following locations are in use:

version label location use
------- --------

2 SASA $070C start of buffers
4 SASA $070F start of buffers
2 SABYTE $0709 II of buffers
4 SABYTE $0711 II of buffers

Presuming the user wishes to change SABYTE, the first
question that needs answered is "How many buffers do I
need?" The rules follow:

OS/A+ VERSION 2: For single density diskettes, use 1
buffer per active drive AND 1 buffer per
simultaneously open file. For double density
diskettes, use 2 buffers per active drive and 2
buffers per simultaneously open file. EACH BUFFER
IS 128 BYTES LONG.

OS/A+ VERSION 4: For disks with 256 byte sectors (e.g.,
floppy disks under double density), use 1 buffer
per active drive AND 2 buffers per simultaneously
open file. For disks with 512 byte sectors,
double both figures. EACH BUFFER IS 256 BYTES
LONG.

CAUTION: Note the difference in the size of the buffers
specified by the SABYTE contents.

--145--

A.2 SPECIFYING EXISTING DRIVES

Under version 4, the only way to specify an existent
drive is to add its parameters to the drive table (see
Chapter 9). Also, the CONFIGure extrinsic command will
configure this drive table for you.

Under version 2, the byte
consult SYSEQU.ASM to
controls which drives are
represents a given drive.
DRVBYT represents drive
drive 2, etc., up to the
represents drive 8.

location DRVBYT (at $70A, but
confirm current location)

active. Each bit of DRVBYT
The least significant bit of
1, the next bit represents
most significant bit which

If a bit is DRVBYT is on (set to one), the drive is
active. If a bit is off, the drive is inactive. Thus
a value of $05 would imply that "Dl:" and "D3:" are
active.

CAUTION: simply changing the bits in DRVBYT or adding
information to the disk drive table is NOT sufficient
to change the system configuration. After changing the
bits, you must cause OS/A+ to reinitialize itself.
This may be accomplished by simply hitting the SYSTEM
RESET key from the keyboard, or calling the DOS
initialization routine, via DOSINI, from a running
program.

A.3 SAVING YOUR MODIFIED VERSION

Saving a modified version of OS/A+ is extremely simple.
With version 2, simply use the INIT command and, when
the menu appears, specify "Write DOS.SYS file only" (or
go ahead and initialize the disk if it is a new
disk ... just be careful not to reinitialize a disk with
valuable goodies on it).

With version 4, the process is both more complicated
and simpler. Since the version 4 boot process simply
searches for the filename "DOS.SYS", any file may be
renamed DOS.SYS and the system will attempt to boot it.

Saving a modified OS/A+, then, is as simple as SAVing
the proper segment of memory. For OS/A+ version 4
issue the following command from the Dl: prompt.

SAVE Dl:DOS.SYS 700 2400 [RETURN)

--146--

APPENDIX B - SYSTEM MEMORY MAPS

B.1 - ATARI ZERO PAGE MAP:

location

0-9
A-B
C-D
E-42
43-49
4A-7F
80-FF
80-BF
D2-FF

CPALOC
DOSINI

usage

system zero page
known to Atari DOS as DOSVEC
vector to FMS initialization
system zero page
fms zero page
system zero page
user and language zero page
BASIC A+ zero page
floating point zero page

B.2 - ATARI SYSTEM MEMORY MAP-- version 2:

location

100-lFF
200-319
300-30B
31A-33F
340-3BF
3C0-57F
580-5FF
600-6FF
700-lC7F
709 SABYTE
70A DRVBYT
7filC SASA
1C80-1EFF
1F00-BFFF
C000-FFFF

usage

6502 stack area
system ram
DCB (device control block)
device handler table
IOCB's - 8 at 16 bytes each
system ram
E: text buffer
user ram
OS/A+ -- file manager and CP
number of 128 byte file buffers
bit map: accessible drives
address of start of buffers
file manager buffers-- default size
user, language, and graphics memory
I/O locations and system rom

--147--

B.3 - ATARI SYSTEM MEMORY MAP-- version 4:

location

11313-lFF
21313-319
31313-313B
31A-33F
340-3BF
3C13-57F
5813-5FF
61313-6FF
71313-lC7F
713F SASA
712 SABYTE
713
lC813-lCFF
lD1313-23FF
241313-2BFF
2C1313-BFFF
C131313-FFFF

usage

6502 stack area
system ram
DCB (device control block)
device handler table
10CB's - 8 at 16 bytes each
system ram
E: text buffer
user ram
OS/A+ file manager
address of start of buffers
number of 256 byte buffers
disk drive table - 8 entries
read/write sector routine
OS/A+ CP -- console processor
file manager buffers-- default size
user, language, and graphics memory
I/O locations and system rom

--148--

APPENDIX C - Errors

C.l TYPES OF ERRORS

All OS/A+ operations return a status value
IOSTAT field. OS/A+ convention is that status
of $80 or greater indicate some sort of error.
are four fundamental kinds of errors that can
with OS/A+:

Hardware Errors

in the
values
There
occur

Such as attempting to read a bad disk, write a
read-only disk, etc.

Data Transfer Errors

Errors Which occur when data is transferred between the
computer and a peripheral device. Examples include
Device Timeout, Device NAK, Framing Error, etc.

Device Driver Errors

Found by the driver for the given device, as in (for
the DFM) File Not Found, File Locked, Invalid Drive
Number; etc.

OS Errors

Usually fundamental usage problems, such as Bad Channel
Number, Bad Command, etc.

--149--

ERROR CODE
HEX DECIMAL MEANING

$01

$02

$03

$80

1

2

3

128

No error or warning.

Truncated ASCII line. The as did not
find a CR within BUFLEN for ASCII line
I/O.

End of file look ahead. The last byte
transfered from the device driver was
its end-of-file byte. The device
driver must set this status, so it is
best to verify that the device being
used is capable of returning this
status before depending on it.

Operation aborted. Set by Device
Handler. (Also BREAK abort on Atari.)

$81 129 File already open.
to open a channel
already been OPENed.

Program is trying
(IOCB) that has

$82

$83

$84

$85

$86

130

131

132

133

134

Device does not exist. The device was
not found in the as device table.
Often caused by forgetting the disk
drive name when usin9 a disk file.

File is write only. Program tried to
read from a file which can only be used
for writing (i.e., file was OPENed with
AUXl set to 8 or 9).

Invalid Command. CIa has rejected your
requested command. (Example: program
tried to do XIO to a device which has
no extended operations defined.)

Device/File not open. The IOCB has not
been OPENed for the operation. Most
I/O requests require that the channel
be OPENed before a request can be made.

The IOCB specified is invalid. Only
IOCB numbers $00, $10, $20, $30, $40,
$50, $60, and $70 are valid. From some
languages, these will be seen as
channels 0 to 7.

--150--

$87

$88

$89

$8A

135

136

137

138

File is read only. Program tried to
write to a file which can only be used
for reading (i.e., file was OPENed with
AUXI specified as 4 or 6.

End of file. No more data in file.

Truncated record error. Usually occurs
When the line you are reading is longer
then the maximum record size specified
in the Call to CIa (line oriented I/O).
Can't occur with binary I/O on version 2
OS/A+.

Device timeout error. Usually set by
the serial bus I/O handler ("SIO")
because a device did not respond within
the alloted time as set by the as.

$8B 139 Device NAK error.
error.

Atari: serial I/O

$8C

$8D

$8E

140

141

142

serial framing error. Atari: serial I/O
error.

Cursor out of rang? for specific
graphics mode you are 1n. (Could be
used for similar meaning by a
non-graphics device.)

Serial bus overflow. Atari: computer
could not respond fast enough to serial
bus input (SIO error).

$8F 143 Checksum error.
serial bus are
error) .

Communications over the
garbled (Atari SIO

$90

$91

$92

144

145

146

1) Device done error. A valid command
on the serial bus was not executed
properly. Atari: disk rotational speed
needs ad-justment. 2) Write protect
error. The diskette has a write protect
tab in place.

Illegal screen mode error. Bad graphics
mode number. Other devices: AUXI and/or
AUX2 bytes in IOCB are illegal.

This error means the function you tried
to do has not been implemented in the
device handler. (Example: attempt to
POINT with the graphics device.)

--151--

$93 147 Not enough RAM for the graphics mode you
requested. (Could be used by custom
drivers for a similar message.)

NOTE: Errors $A0 through $AF are file manager errors.

$A0

$Al

$A2

$A3

$A4

$A5

$A6

$A7

160

161

162

163

164

165

166

167

Either a drive # NOT between 1-8 or
drive was not powered on.

Too many OPEN files. No free sector
buffers to use for another file.

Disk FULL. No free space left on disk.

Fatal system error. Either DOS has bug
or bad diskette.

File mismatch. Bad file structure or
POINT values wrong.

Bad file name. Check for illegal char-
acters in file name. Version 4 is more
liberal in this regard than version 2.

The byte count in your POINT Call was
greater then 125 (for single density
version 2) or 253 (for double density
version 2).

The file specified is locked
(PROtected). Protected files cannot be
erased or written to.

$A8 168 The software interface for the
device received an invalid
(example: tried to access
existent track or sector).

specific
command
a non-

$A9

$AA

169

170

All space allocated for the directory
has been used up (too many filenames in
use) .

The file you requested does not appear
on this diskette.

$AB 171 You have tried to POINT to a byte
file that is not OPENed for
(version 2 only).

in a
update

$AC

$AD

172

173

Tried to OPEN a DOS 1 file with DOS II
(version 2 only).

The disk drive has found bad sectors
While trying to format the disk.

--152--

